IMS HALDB Reorganization Number Verification

Rich Lewis
IMS Advanced Technical Support
IBM Americas

March 2006

A

TECHNICAL SALES SUPPORT
AMERICAS

© 2006, IBM Advanced Technical Support Techdocs Version 3/1/2006
http://w3.ibm.com/support/Techdocs

IMS HALDB Reorganization Number Verification Page 1 of 7

HALDB Partition Number Verification

Recent IMS maintenance has added a capability for IMS to verify the reorganization numbers of
HALDB partitions. This enhancement has improved the integrity of HALDB databases. The
maintenance was delivered as a result of APARs PQ97357 for IMS Version 9 and PQ97356 for IMS
Version 8. This paper explains the need for the function, how it operates, and how you can
implement it. It also provides guidance on avoiding the potential database integrity exposure before
you apply this maintenance. Finally, it provides background information about how IMS uses
reorganization numbers with HALDB partitions.

Without the HALDB partition number verification function, HALDB databases can be corrupted by
invalid reorganizations. This function eliminates this exposure.

If you are unfamiliar with IMS's use of partition reorganization numbers and indirect list keys (ILKs),
you should read the Partition Reorganization Number Background section at the end of this
document before proceeding.

The Potential Problem

Without this enhancement reorganization numbers can be regressed. That is, a reorganization might
not increment a reorganization number. It could leave the reorganization number at its old value or
lower the value. After the reorganization a new segment inserted in the partition could have the
same indirect list key (ILK) as a previously inserted segment. This is a potential integrity problem if
the newly inserted segment is the target of a secondary index or logical relationship. Two segments
could have the same ILK. These segments would have only one Indirect List Entry (ILE) in the
Indirect List Data Set (ILDS). When the pointers to these two segments are updated, they could
point to the same target. Half of the time this would be the wrong segment.

The exposure to this problem occurs when partition boundaries are changed and the partitions have
been reorganized a different number of times.

Without this enhancement IMS keeps the reorganization number for a partition only in the partition
data set. It is not kept in the RECONs. When the partition is unloaded, the reorganization number is
read and placed in the prefix of each segment in the unload data set. When reload inserts the first
segment in a partition, it takes the reorganization number from the segment's prefix in the unload
data set, increments it, and writes it to the partition data set. This process may not increment the
reorganization number when partition boundaries are changed.

The following is an example of a situation where the reorganization number of a partition is not
incremented.

A database has two partitions, partition X and partition Y. Partition X contains keys 0 through 5000.
Partition Y contains keys 5001 through 9999. The reorganization number for partition X is 3. The
number for Y is 4.

© 2006, IBM Advanced Technical Support Techdocs Version 3/1/2006
http://w3.ibm.com/support/Techdocs

IMS HALDB Reorganization Number Verification Page 2 0f7

Partition X Partition Y

Reorg #: 3 Reorg #: 4

Keys: 0 - 5000 Keys: 5001-9999

These partitions are reorganized and their key ranges are changed. Both are unloaded. The partition
definitions are changed so that the key range for partition X is 0-4000 and the key range for partition
Y is 4001-9999. When the reload is done, the first segment inserted into partition Y was formerly in
partition X. The reorganization number in its prefix is 3. This number is incremented to 4 and
becomes the new reorganization number for partition Y. Unfortunately this is the same as the old
reorganization number for partition Y. The following diagram illustrates the situation after the
reorganization.

Partition X Partition Y
Reorg #: 4 Reorg #: 4
Keys: 0 - 4000 Keys: 4001-9999

As you can see, the reorganization number for partition Y has not been incremented. Its value
remains 4.

The Solution

APARs PQ97357 for IMS Version 9 and PQ97356 for IMS Version 8 address this problem. With
this maintenance IMS stores the reorganization number for a partition in the RECON partition
database record. This number is incremented by reorganizations. This eliminates restrictions on
changing partitions with reorganizations. The number in the RECON record is also verified against
the number stored in the partition data set. This provides additional integrity checking.

The maintenance causes the following actions to occur:

e The reorganization numbers in the RECON partition database records are initially set to zero.

e Non-load mode update programs for a partition read the number from the RECON record. If
it is a lower value than the value in the data set, the value in the data set is written in the
RECON record. When implementing this maintenance, this typically will be the action that
makes the RECON record value non-zero.

e HD Unload reads the reorganization number from the data set and writes it to the RECON
record. It does not update the reorganization number in the partition data set. It also writes
the reorganization number in the prefixes of the segments in the unload data set.

© 2006, IBM Advanced Technical Support Techdocs Version 3/1/2006
http://w3.ibm.com/support/Techdocs

IMS HALDB Reorganization Number Verification Page 3of7

e HD Reload increments the value in the RECON record and writes it to the partition data set
and the RECON record. It ignores the reorganization numbers in the unload data set.

e Partition initialization reads the number from the RECON record, increments the value, and
stores it in the partition data set. It does not store the incremented value in the RECON
record. This ensures that partition initialization of an existing partition does not regress its
reorganization number. Partition initialization is a function of the HALDB Partition Data Set
Initialization utility (DFSUPNTO) and the Database Prereorganization utility (DFSURPRO).

e Initial load sets the reorganization number to one in both the RECON record and the partition
data set.

These actions ensure that reorganizations always increase partition reorganization values and that
they are not regressed by other activities.

Implementing the Solution

The changes in these APARs will only take effect when you set a flag in the RECONs. Do not set
the flag before you apply the maintenance to all SDFSRESL data sets (RESLIBs) which you use
with the RECONs. The MINVERS value must be 8.1 or higher to set the flag. You set the flag with
the following DBRC command:

CHANGE .RECON REORGV

A listing of the RECON header shows the current status of the flag as follows:

REORG NUMBER VERIFICATION = YES|NO

After reorganization number verification is implemented, you may receive some new messages.
Message DSP1108I is issued when the reorganization number for a partition is incremented. The
text of the message is:

DSP1108I REORG# CHANGED FROM xxxxx TO yyyyy FOR DATABASE zzzzzzz

In this message zzzzzzz is the partition name, not the database name.

Messages After Timestamp Recoveries

If you do a timestamp recovery to a time before the last reorganization, you must restore all of the
data sets to the same time. This will require a rebuild of the ILDS. You may do this with the
Index/ILDS Rebuild utility (DFSPRECO). These timestamp recoveries will regress the
reorganization number in the partition data set to a value lower than that in the RECON record. This
is OK. IMS uses the reorganization number in the RECON record. IMS updates the value in the
data set when it first opens the data set for update. It then issues the DFS3280I message:

DFS3280I REORG# UPDATED FOR PARTITION yyyyyyy

© 2006, IBM Advanced Technical Support Techdocs Version 3/1/2006
http://w3.ibm.com/support/Techdocs

IMS HALDB Reorganization Number Verification Page 4 of 7

If the partition is opened for input, IMS cannot update the reorganization number in the data set and
issues the DFS3282W message. The text of the message is:

DFS3282W REORG# NEEDS UPDATE FOR PARTITION yyyyyyy

This is not a problem. IMS will use the reorganization number value from the RECONs. The
number will be updated when the data set is opened for update.

IMS Tools

The IBM IMS tools, such as High Performance Unload, High Performance Load, Online
Reorganization Facility, and the HALDB Conversion and Maintenance Aid do not require any
maintenance for support of the new reorganization number verification function. If you use IMS
tools from other vendors, you should check with your vendor to see if they require maintenance for
support of the new function.

Warning If You Have Not Implemented the Solution

We highly recommend that you apply this maintenance. If you have not applied this solution, you
should be careful when changing partition assignments. There is a potential data integrity problem.
The exposure only occurs when the following two conditions are met:

1. Partition boundaries are changed

2. The partitions have been reorganized a different number of times
In addition, the problem occurs only when the first segment inserted into a partition by reload comes
from a partition with a lower reorganization number.

The exposure does not exist when adding new partitions.

What can you do when the conditions exist and you want to change the partition boundaries?
Instead of changing the boundaries on the existing partitions, you can delete them and create new
partitions. The steps would be:

1. Unload the affected partitions.

2. Disable or delete the partition definitions for the affected partitions.

3. Define new partitions with new key ranges. If you delete the old partition definitions, these

partitions may have the same names as the deleted partitions.
4. Reload the data.

When you define new partitions, they get new partition ID numbers. These numbers are used in the
ILKs. So they cannot be duplicates of the ILKs for any previously existing segments.

Partition Reorganization Number Background

This section explains how partition reorganization numbers are used and maintained by IMS.

© 2006, IBM Advanced Technical Support Techdocs Version 3/1/2006
http://w3.ibm.com/support/Techdocs

IMS HALDB Reorganization Number Verification Page 50f7

HALDB maintains a reorganization number for each partition in a PHDAM or PHIDAM database.
The number is stored in the first block (or CI) of the first data set in the partition. It is updated when
the partition is reorganized. This number is used as part of the self-healing pointer process. This
process updates secondary index and logical relationship pointers after the partition has been
reorganized.

Secondary index and logical relationship pointers are stored in the extended pointer set (EPS) in the
pointer segment. The reorganization number of the target partition is also stored there. This number
indicates that the pointer was last updated when the target partition had the corresponding
reorganization number. When these pointers are used, IMS compares the reorganization number in
the EPS to the number in the target partition. If they match, IMS "knows" that the pointer is
accurate. If the numbers do not match, IMS "knows" that a reorganization has been done since the
pointer was last updated. IMS looks up the new location of the target segment in the Indirect List
Data Set (ILDS) for the partition.

The key of the entry in the ILDS is the indirect list key (ILK). The ILK is associated with the target
segment. The ILK is created when the segment is created and stored in the segment prefix. The ILK
is built from three values. They are the relative byte address (RBA) of the segment when it was
created, the partition ID number of the partition in which is was originally stored, and the
reorganization number of the partition when the segment was created. The ILK value for a segment
never changes after it is created. It is not changed by reorganizations. Since two segments cannot
have the same RBA in the same partition at the same time, ILKs are unique across a database. At
least, they should be.

The following diagrams illustrate how pointers, reorganization numbers, and ILKs are used. In the
first diagram the secondary index or logical relationship pointer has been updated after the last
reorganization. That is, the "broken" pointer has been "healed." The reorganization number values
in the partition data set and in the ILE are 3. The value of the reorganization number in the EPS of
the pointer segment is also 3. The RBA in the EPS points to the current location of the target
segment.

Sec. Index or Log. Related DB ILE

Segment Code

Segment A

Fs_fo

Partition ID

. Current reorg #: 3

R ‘ — Current RBA: old
EPS L7 <
Partition 1D R Target D
Reorg #: 3 /,,/ /

RBA -
=~ Reorg #: 3 *{
ILK | —|

ILK =~

© 2006, IBM Advanced Technical Support Techdocs Version 3/1/2006
http://w3.ibm.com/support/Techdocs

IMS HALDB Reorganization Number Verification Page 6 of 7

The following diagram illustrates the situation after a reorganization. The reorganization has moved
the target segment, updated its ILE in the ILDS, and incremented the reorganization number in the
partition data set. The reorganization number in the partition data set is 4. The reorganization
number in the EPS is still 3. This indicates that the pointer in the EPS is inaccurate. IMS will have
to look up the new RBA for the target segment. It uses the ILK to find the appropriate entry in the
ILDS. This entry contains the new RBA for the segment.

Sec. Index or Log

Segment A

. Related DB

i i

ILE

ILK

Segment Code

Partition ID

Current reorg #: 4

— Current RBA: new
B/

EPS L’
Partition ID el Target D
Reorg #: 3 _- -7
RBA ~_-[
LK -~ Reorg #: 4

ILK

uly

When IMS looks up the new RBA for the target segment, it also updates the RBA field in the EPS
with the new RBA value and the new reorganization number. This is the self-healing process. The
following diagram illustrates the situation after this process.

Sec. Index or Log

Segment A

. Related DB

| FPS r<ey

ILE

ILK

Segment Code

Partition ID

Current reorg #: 4

— Current RBA: new
B/

7
EPS L7 7
Partition 1D R Target D
7
Reorg #: 4 e -
RBA ~_-f
K -~ Reorg #: 4

ILK

uly

© 2006, IBM Advanced Technical Support Techdocs

http://w3.ibm.com/support/Techdocs

IMS HALDB Reorganization Number Verification

Version 3/1/2006

Page 7 of 7

