A flexible solution to your high-security cryptographic processing needs

IBM 4765 PCIe Cryptographic Coprocessor

Highlights

- A PCIe card with a multi-chip embedded module intended to be a high-end secure coprocessor
- Suitable for high-security processing and high-speed cryptographic operations
- Tamper-responding programmable secure hardware that meets FIPS 140-2 Level 4 certification, the highest level of security
- Hardware to perform AES, DES, T-DES, random number generation, SHA-1, SHA-256, MD5, HMAC, and large number modular math functions for RSA (up to 4096-bit), ECC Prime Curve and other public-key cryptographic algorithms
- IBM Common Cryptographic Architecture (CCA Support Program)
- Custom software options
- Secure code loading that enables updating of the functionality while installed in application systems
- Foundation for secure applications, such as high-assurance digital signature generation or financial transaction processing
- Maximum flexibility, maximum trust with minimum physical security

The use of cryptography is a crucial element of modern business applications. These applications use cryptography in a variety of ways to protect the privacy and confidentiality of data, to ensure the integrity of data, and to provide user accountability through digital signature techniques. The IBM® 4765 PCIe Cryptographic Coprocessor is a programmable PCIe card that offloads computationally intensive cryptographic processes from the hosting server, and performs sensitive tasks unsuitable for less secure general-purpose computers. It is a key product for enabling secure Internet business transactions, and is suited for a wide variety of secure cryptographic applications.

The IBM 4765 is the latest generation of the IBM cryptographic coprocessor family. It is certified by NIST (certificate no. 1505) under the U.S. Government FIPS 140-2, “Security Requirements for Cryptographic Modules” at the Level 4 standard.
IBM provides the Common Cryptographic Architecture (CCA) Support Program that you can load into the coprocessor to perform cryptographic functions common in the finance industry and in Internet business applications. You can also purchase consulting services or a programming toolkit to extend or replace the standard functions provided by IBM.

Typical applications
The IBM 4765 PCIe Cryptographic Coprocessor is suited to applications requiring high-speed cryptographic functions for data encryption and digital signing, secure storage of signing keys, or custom cryptographic applications. These can include financial applications such as PIN generation and verification in automated teller and point-of-sale transaction servers, Internet business and Web-serving applications, Public Key Infrastructure applications, smart card applications, and custom proprietary solutions. Applications can benefit from the strong security characteristics of the coprocessor and the opportunity to offload computationally intensive cryptographic processing.

What is a secure coprocessor?
A secure coprocessor is a general-purpose computing environment that withstands physical attacks and logical attacks. The device must run the programs that it is supposed to run, with confidence that those programs have not been modified. You must be able to (remotely) distinguish between the real device and application, and a clever impersonator.

The coprocessor must remain secure even if adversaries carry out destructive analysis of one or more devices. Many servers operate in distributed environments where it is difficult or impossible to provide complete physical security for sensitive processing. In some applications, the motivated adversary is the end user. You need a device that you can trust even though you cannot control its environment.

Cryptography is an essential tool in secure processing. When your application must communicate with other distributed elements, or assert or ascertain the validity of data that it is processing, you will find cryptography an essential tool.
IBM 4765 hardware

The secure processing environment (security module) of the coprocessor contains redundant embedded IBM PowerPC microprocessors (405Gr), custom hardware to perform AES, DES, T-DES, SHA-1, SHA-256, MD5, HMAC, and public key cryptographic algorithms, a secure clock/calendar, and a hardware random number generator. It also has protective shields, sensors and control circuitry to protect against a wide variety of attacks against the system.

Embedded certificate

During the final manufacturing step, the coprocessor generates a unique public/private key pair, which is stored in the device. The tamper detection circuitry is activated at this time and remains active throughout the useful life of the coprocessor, protecting this private key, as well as all other keys and sensitive data. The coprocessor public key is certified at the factory by an IBM private key and the certificate is retained in the coprocessor.

Subsequently, the coprocessor private key is used to sign coprocessor status responses which, in conjunction with a series of public key certificates, demonstrate that the coprocessor remains intact and is genuine.

Tamper responding design

The coprocessor includes sensors to protect against attacks involving probe penetration, power sequencing, and temperature manipulation, consistent with the FIPS 140-2 Level 4 requirements. From the time of manufacture, if the tamper sensors are triggered, the coprocessor zeroes its critical keys, destroys its certification, and is rendered permanently inoperable. Note therefore that the coprocessor must be maintained at all times within the temperature, humidity and barometric pressure ranges specified in the Environmental requirements section of this data sheet.

A pair of batteries mounted on the coprocessor board provides backup power when the coprocessor is not in a powered-on machine. These batteries must only be removed according to the documented battery replacement procedure to avoid zeroizing the coprocessor and rendering it permanently inoperable.

A battery replacement kit can be obtained from IBM (part number 45D5803). A multi-battery replacement pack (part number 74Y0465) containing 20 batteries is also available. This pack requires a battery tray to install the batteries. The tray comes with the battery replacement kit.

IBM 4765 software

- IBM-supplied no-charge support program feature: IBM Common Cryptographic Architecture (CCA)
- Or choose customization options:
 — IBM custom development to your specification
 — Toolkit under custom contracts and export control
CCA Support Program

Available for use with SUSE™
Linux Enterprise Server 11
Service Pack 1 (SLES 11 SP1)
from Novell (32-bit)

CCA highlights:

• AES, DES, and T-DES based
data confidentiality and
message integrity — AES, DES
and T-DES CBC encryption,
DES and T-DES MACs, and
HMAC
• RSA-based and ECC-based
digital signature generation
and verification and message
hashing — PKCS #1, ISO
9796-1, ANSI X9.31, SHA up
to 512 bits, and MD5 — RSA
keys to 4096 bits
• PIN processing — several
generation and verification
processes, many PIN block
formats
• Key distribution based on
AES, DES, and RSA,
generation of symmetric keys
and ECC and RSA key pairs —
RSA keys to 4096 bits
• Support for smart card
applications using the EMV®
specifications
• Initialization and backup
options
• Generation of high-quality
random numbers
• Refined key typing, to block
attacks through misuse of the
key-management system
• User Defined Extension
(UDX) facility can be used to
add custom functions to the
standard CCA command set.
Custom functions execute
inside the secure module of
the IBM 4765, with the same
security as the other CCA
functions.
• Support for applications that
implement the SET™
Protocol

Custom software support

The coprocessor contains firmware
to manage its specialized hardware
and to control loading of additional
software based on coprocessor-
validated digital signatures. Software
support includes the embedded
Linux operating system and special
device drivers, which provide the
platform for application support.
Custom applications can be written
to run within the coprocessor, using
the internal APIs to perform
cryptographic functions. Developing
additional functions through User
Defined Extensions (UDXs) using
CCA as a starting point can be more
economical and less time-
consuming than creating an entirely
new application.

Special key management functions
and PIN processing routines are
typical extensions.

When an application is substantially
different from CCA, or is proprietary,
a complete custom application can
be built on the embedded Linux
environment. Very different
approaches to cryptographic
processing or even non-
cryptographic applications that
require a secure processing
environment can be developed for
the coprocessor.

4765 technology in IBM servers

The following IBM server families
support 4765 technology, either directly
or as orderable features.

• IBM System x—IBM 4765 can be
ordered and installed. CCA support
program for SLES 11 SP1 can be
downloaded from the
ibm.com/security/cryptocards Web
site
• IBM Power Systems—selected models
offer an optional cryptographic
coprocessor feature
• IBM System z—selected models offer
an optional Crypto Express3 (CEX3)
feature. Support is provided by ICSF
cryptographic services in z/OS.
Support for the Crypto Express3
feature is provided for Linux on IBM
System z by the CCA for Linux on
System z rpm, available from:
ibm.com/security/cryptocards/
pciecc/ordersoftware.shtml
Programming custom applications
The coprocessor represents a specialized programming environment with its own tools, debug aids, and code release procedures. Rather than learn to create applications for this specialized environment, customers can obtain custom programming services through an experienced IBM Global Services department or selected contractors. IBM is pleased to jointly develop specifications and quote on custom solutions.

Alternatively, IBM offers a toolkit you can use to create and debug custom applications yourself. The toolkit is supported by documentation that you can obtain from ibm.com/security/cryptocards. Because this is a specialized programming environment and because there are special considerations related to the export and import of cryptographic implementations, the toolkit is available only under special contracts. Generally, in addition to the actual toolkit, customers will need to purchase consulting time for education and ongoing support. Any export or import considerations will be part of the toolkit custom contract.

Education
Courses are held periodically to provide education about the IBM 4765 and CCA. The courses can also be taught at your location, worldwide. These courses cover programming for the CCA API and the IBM 4765 installation and configuration.

In addition, custom courses can be arranged to cover other topics including programming and debugging applications that operate within the IBM 4765.
IBM 4765 PCIe Cryptographic Coprocessor technical specifications

Physical characteristics:
Card type: PCIe Short Type
PCI Local Bus Specification 2.2, PCIe specification 1.1
Voltage: +3.3 VDC ± 10% 23.44 W max

System requirements
The following sections describe requirements for the system in which the 4765 is installed.

Software (downloadable from PCIe Cryptographic Coprocessor link of ibm.com/security/cryptocards):
IBM CCA Support Program for use on SUSE Linux 11 Service Pack 1 (32-bit)

Hardware:
The coprocessor can be installed in an IBM System x ServerProven server. For a list of approved System x servers for the 4765, go to the PCIe Cryptographic Coprocessor link of the ibm.com/security/cryptocards Web page. From there, click on the Product summary link, then click on the IBM ServerProven link.

Environmental requirements
From the time of manufacture, the IBM 4765 PCIe Cryptographic Coprocessor card must be shipped, stored, and used within the following environmental specifications. Outside of these specifications, the IBM 4765 tamper sensors can be activated and render the IBM 4765 permanently inoperable.

IBM 4765
Shipping: Card should be shipped in original IBM packaging (electrostatic discharge bag with desiccant and thermally insulated box with gel packs).
Temp shipping: -40°C to +60°C
Pressure shipping: min 550 mbar
Humidity shipping: 5% to 100% RH

Storage: Card should be stored in electrostatic discharge bag with desiccant.
Temp storage: +1°C to +60°C
Pressure storage: min 700 mbar
Humidity storage: 5% to 80% RH

Operation (ambient in system)
Temp operating: +10°C to +35°C
Humidity operating: 8% to 80% RH
Operating altitude (max): 10 000 ft equivalent to 700 mbar min

For more information
Documentation and publications, ordering procedures, and news concerning the IBM 4765 PCIe Cryptographic Coprocessor can be found at: ibm.com/security/cryptocards, or call IBM DIRECT at 1-800-IBM-CALL, or contact your IBM representative.