Comparison of Digital Control Loops
Analytical Models, Laboratory Measurements, and Simulation Results

Phil Cooke
Rohan Samsi
Tom Wilson
20 October 2009

primarion
Infineon Digital Power

Simplis
TECHNOLOGIES

Infineon
Never stop thinking
Outline

- Application Circuit & IC Block Diagram
- Control Loop Model, Design, and Analysis
- PID Design – Analytical Design Procedure
- Simulation & Experimental Circuit Schematics
- Time-Domain Simulation Model vs. Experimental Results
- Frequency Domain Comparison
- Summary
Control Loop Model: Mostly Small-Signal

- Line-to-Output Transfer Function
- Output Impedance Transfer Function
- Lumped Total Delay
- Can include delay from DPWM block
- Feedback Gain: 1, 1/2, 1/3
- Control-to-Output Power Converter Averaged Model

Transfer functions in Continuous “s” or Discrete “z” frequency domains

Line-to-Output Transfer Function:
- $I_o(s)$
- $V_{in}(s)$

Controller:
- $G_c(s)$
- $G_c(z)$

DPWM:
- $G_{DPWM}(s)$
- $G_{DPWM}(z)$

Converter:
- $G_{OC}(s)$
- $G_{OC}(z)$

Output Impedance Transfer Function:
- $Z_o(s)$

Feedback Gain:
- $G_{OIN}(s)$

Lumped Total Delay:
- $e^{-s \cdot t_d}$

Infineon Digital Power

IBM Power and Cooling Technology Symposium 2009
Control Loop Design – What Do We Want To Do

Loop Gain

Control-to-Output

Controller

Crossover Frequency

Phase Boost

-180°
Control Loop Design – What Do We Want To Do

Loop Gain

Control-to-Output

Controller

Crossover Frequency

Phase Boost and Gain Adjust

-180°
Analysis: Small-Signal Equations

Total Discrete Plant and Feedback
These values \((n_1, n_0, d_1, d_0, H)\) are known

Discrete Controller
\[
G_C(z) = A \frac{az^2 + bz + c}{z^2 - (1 + K_{FD})z + K_{FD}} = A \left[K_I \cdot \frac{1}{1 - z^{-1}} + \left(K_P + K_D \cdot |1 - z^{-1}| \right) \frac{1}{1 - K_{FD} z^{-1}} \right]
\]

Loop Gain
\[
|T(z)| = |G_C(z) G_{ZI}(z)|
\]

Solution:
Solve at Crossover
\[
20 \log \left(|G_C(z_C) G_{ZI}(z_C)| \right) = 0 \quad \text{or} \quad |G_C(z_C) G_{ZI}(z_C)| = 1
\]
PID Design – Analytical Design Procedure

1. Select desired analog crossover frequency f_C, this is the loop bandwidth, and calculate system resonance f_o from the power converter reactive components

2. Set the “analog” post filter pole, f_{PA2}, to $3 \cdot f_C$, and find K_{FD}
 - A reasonable starting range is from $f_{PA2} = f_C / 2$ to $3 \cdot f_C$
 - K_{FD} is one of the following {0.125, 0.25, 0.375, 0.50, 0.625, 0.75, 0.875, 1.00} for the PX7510D

3. Start with $f_X = 0.85 \cdot f_o$ and $Q_X = 0.7$ for the controller zeroes and find the required loop-gain (i.e., find α) to have $T(z)$ crossover at f_C
 - f_X should be equal to or less (for design margin) than f_o, but not too low

4. Find α from:

$$G_{Z1}(z) = \frac{n_1 z + n_0}{z^2 + d_1 z + d_0} H$$

Using

$$\alpha = \frac{|n_1 z_C + n_0|}{|z_C^2 + d_1 z_C + d_0|} H$$
PID Design – Analytical Design Procedure

- Where G_{Z_1} is the total discrete plant and feedback gain

5. From the discrete controller transfer function, find β

$$G_C(z) = A \frac{az^2 + bz + c}{z^2 - (1 + K_{FD})z + K_{FD}}$$

Find β

$$\beta = \left| \frac{z_C^2 - (1 + K_{FD})z_C + K_{FD}}{z_C} \right|$$

6. Using pole-zero mapping ($z = e^{sT}$), along with the discrete crossover z_C, find γ

$$z = e^{sT}$$

$$z_C = e^{-j\omega_C T_S}$$

$$w_C = 2\pi f_C$$

analog maps to digital

$$1 + \frac{s}{Q_X}w_X + \left(\frac{s}{w_X}\right)^2 \rightarrow (z - z_{ZN1})(z - z_{ZN2})$$

Find γ

$$\gamma = \left| z_C - z_{ZN1} \right| \left| z_C - z_{ZN2} \right|$$

7. Solve for r using f_X and Q_X in:

$$r = e^{-\pi f_X T_S / Q_X}$$
8. Finally the a, b, and c controller terms are:

$$a = \frac{\beta}{\alpha \cdot \gamma \cdot A}$$

$$b = -2 \cdot a \cdot r \cdot \cos \left[2 \cdot \pi \cdot f \cdot x \cdot T \cdot s \cdot \sqrt{1 - \frac{1}{2 \cdot Q \cdot x^2}} \right]$$

$$c = a \cdot r^2$$

9. Alternatively, the K_P, K_I, and K_D terms are:

$$K_D = c$$

$$K_I = \frac{a + b + K_D}{1 - K_{FD}}$$

$$K_P = a - K_I - K_D$$
Experiment Circuit Schematic

Integrated Driver and MOSFETs (PX4660)

Latest PX7510D Controller
Time-Domain Simulation vs. Experimental Results

5 A to 10 A Load Step

SIMPLIS Simulation Model

Imported Scope Data
Time-Domain Simulation vs. Experimental Results

10 A to 5 A Load Step

SIMPLIS Simulation Model

Imported Scope Data
Time-Domain Simulation vs. Experimental Results

5 A to 20 A Load Step

SIMPLIS Simulation Model

Imported Scope Data

20 October 2009
IBM Power and Cooling Technology Symposium 2009

Page 16
Time-Domain Simulation vs. Experimental Results

20 A to 5 A Load Step

SIMPLIS Simulation Model

Imported Scope Data
Experiment Results: Time-Domain

Actual Scope Plots
All data was extracted to .csv file for comparison

5 A to 10 A Load Step

10 A to 5 A Load Step
Frequency-Domain Comparison: Original Design

fsw is the Switching Frequency

The MatLab model shown here uses a more accurate digital loop model.
Frequency-Domain Comparison: Original Design

The MatLab model shown here uses a simplified digital loop model.

Both the gain and phase are less accurate at the higher frequencies.

- SIMPLIS T
- MatLab T
- Measured T
This is a more aggressive design.

The MatLab model shown here uses a more accurate digital loop model.

More phase boost throughout, higher crossover achievable.
Summary

Understanding Digital Control systems requires control loop models - The behavior can be better appreciated by analytical analysis aided with computer simulation tools in the time and frequency domain to gain further insight.
Summary

- Understanding Digital Control systems requires control loop models - The behavior can be better appreciated by analytical analysis aided with computer simulation tools in the time and frequency domain to gain further insight.

- Models for a typical digital PID voltage mode controller was provided.
Summary

- Understanding Digital Control systems requires control loop models - The behavior can be better appreciated by analytical analysis aided with computer simulation tools in the time and frequency domain to gain further insight.

- Models for a typical digital PID voltage mode controller was provided.

- A digital design procedure starting from analog frequency domain specifications was given using these models to calculate the controller PID coefficients.
Summary

- Understanding Digital Control systems requires control loop models - The behavior can be better appreciated by analytical analysis aided with computer simulation tools in the time and frequency domain to gain further insight.

- Models for a typical digital PID voltage mode controller was provided.

- A digital design procedure starting from analog frequency domain specifications was given using these models to calculate the controller PID coefficients.

- Comparison of the time and frequency data was made between the models and simulation results to the real experimental data, simulation tools can further the accuracy of the validation before designs are released to production.
Summary

- Understanding Digital Control systems requires control loop models - The behavior can be better appreciated by analytical analysis aided with computer simulation tools in the time and frequency domain to gain further insight.

- Models for a typical digital PID voltage mode controller was provided.

- A digital design procedure starting from analog frequency domain specifications was given using these models to calculate the controller PID coefficients.

- Comparison of the time and frequency data was made between the models and simulation results to the real experimental data, simulation tools can further the accuracy of the validation before designs are released to production.

- This represents a digital design example where all of the results are compared – this provides confidence that these systems are understood and designs can be robust using these approaches.