Digital Power Management:

A requirement....

Not an option

IBM Symposium
October 2008

Steve Pullen
Primarion Corporation
VP System and Application Engineering
System Power Management

12 volt Bus

System Management

System Supervisor

Local Control Bus

1.1V

3.3V

1.35V

1.5V

Multiphase VRD

Chip 1

Chip 2

Memory

Memory

Memory

Memory

Processor

Digital Systems Tomorrow
Digital power management is required

Key areas of

Digital Power Management advancement

- Introduction
- Diagnostics and communication
- Efficiency and loss management
- Transient response
Power Management Communication

- Communication is digital throughout the infrastructure
 - Digital communication with power IC is expected
 - Bus has bi-directional communication
 - Bus tends to be proprietary per end silicon at load ASIC

- Digital communication to the system environment from power IC
 - Open bus structure available; PMBus, I2C etc
 - Telemetry information: Voltage, temperature, current power, average current over long time blocks
 - Fault information
 - Typically a lower frequency I2C bus at 100Khz to 400Khz

- Digital Communication between silicon load and power IC device
 - Power functions are defined on the serial bus
 - Optimization of efficiency and power consumption can be accomplished across all runtime scenarios of various architectures
 - High frequency bus operable >20 MHz
Simplified Control Block

Digital control IC

- S/H
- VADC
- PID (Compensator)
- DPWM
- VID sense
- Isum & AVP Filter
- IADC
- State machine

Digital Output

- FET Driver
- Digital Output

Analog sense

- Analog sense
- Analog sense

System

- Serial Bus
- High speed serial bus

Load
Key areas of Digital Power Management advancement

- Introduction
- Diagnostics and communication
- Efficiency and loss management
- Transient response
Diagnostics and Communication

- Full communication of key telemetry parameters of power solution to the System
 - Temperature of devices
 - IC temperature data
 - FET temperatures
 - Voltage and current telemetry
 - Characterization of loads can easily be accomplished
 - Blocks of average current - seconds of time
 - Peak currents of load data can be characterized
 - Power data can be streamed to the system or ASIC
 - Fault reporting

- System response to the stream of data. What do you do with it?
 - Intelligently use the data for system optimization and function
 - Respond to the data for making decisions to turn on and off power
 - Early warning of parameters exceeding operating characteristics
Fault communication and diagnostics

- **Fault communication**
 - Faults can be reported to system
 - OCP, OVP, UVP, VinUVP, VinOVP, temperature, duty-cycle
 - Fault and key data information can be streamed to system or load
 - Proactive response to data- Power loss, voltage, temperature.
 - Response to faults can be intelligently executed upon
 - Predicting failures before they occur

- **Black Box information**
 - Last picture of power delivery when fault occurs
 - Vin goes down
 - When a fault occurs in the circuitry of a POL rail
 - Clear picture of the failing parameter in power stage
 - Vin goes down- Status of rail reported
 - When major fault occurs- last mirror image saved for system analysis
 - Failure mode is reported
Digital power management is required

Key areas of

Digital Power Management advancement

- Introduction
- Diagnostics and communication
- **Efficiency and loss management**
- Transient response
Optimal Efficiency over load

- Digital is enabling the system to manage the consumption of power
 - Phase dropping and adding can create an approximate constant peak efficiency over loading with multiphase circuits.
 - Phasing can be dropped back to a low power state where one phase can support the ASIC voltage and current in an idle state.
 - Number of operational phases can be defined load current
 - Phase drop/add can be determined by current level in application
 - Example: Memory of 8 DIMM memory. Use 4,3,2 phases where phasing can be defined for optimal efficiency for the memory
 - Phase/gain can be programmed for each state in order to keep constant bandwidth from 1 phase to full phase operation of power stage
 - Transient response can be optimized digitally with phase changes by activating phases on transient events.
Dynamic Phasing-iPS for Memory-1.5Volt

Vout=1.5 volts
iPS-PX4650
Fo=350Khz
Dynamic Phasing-Discretes for Memory-1.5V

Low Side- BSC020N03
High Side- BSC080N03
Vout = 1.5 volts
F0 = 400Khz
2 Phase change to 4 phases
Digital power management is required

Key areas of

Digital Power Management advancement

- Introduction
- Diagnostics and communication
- Efficiency and loss management
- Transient response
Transient capability improvement

- Improvement to transient response via custom algorithms
 - Non-linear/custom algorithms can run in parallel with main loop
 - Ex. Asynchronous phase firing improves transients significantly
 - Extra Pulses can be fired within 50 nSec of transient detection
 - Transient response function can occur past the bandwidth of the power stage crossover frequency.

![Diagram](image-url)

- **Vout**
- **Switch Node**
- **One phase**

100nSec
Example of 2 phase to 4 phase dynamic transient

* 10 to 60 amp transient—Meets Intel requirements

2 phase to 4 phase transition

\(V_{sw1} \)

\(V_{sw2} \)

\(V_{sw3} \)

\(V_{sw4} \)

\(R1: I_{out} \)

\(R2: V_{out} \)

\(F_o = 615 \text{Khz} \)

* 10 to 60 amp transient—Meets Intel requirements

2 phase to 4 phase transition
Improved Transient Response

Assumptions

- Load lines can be as low as .5mOhms to 1.25 mOhms for high current processors.

- If .8 mOhm load line then loop gain keeps output impedance at .8 mOhm until near the crossover frequency

- Past the bandwidth of the amplifier, the impedance of the capacitor bank determines transient response

- Digital ATR2 asynchronously adds pulses to phases when transient events take the output voltage out of regulation.

- Result- Reduced output impedance past the bandwidth of PID loop.

- Result- Reduced cost of capacitor bank components
Output Impedance testing

Digital Controller

Vin

S/H

VADC

PID (Compensator)

VIDs

FET Driver

State machine

DAC

Isum & AVP Filter

VIDs

sense amp S/H

Serial Bus

System

Bandwidth - 150kHz

Frequency VRD - 600KHz

4/5 phase operation

90A constant step load

One Phase Of Multiphase Power Stage
Output impedance of power stage

- 1024uF MLCC + 470uF Poscap - No ATR2
- 1024uF MLCC + 3x470uF Poscap - No ATR2
- 1024uF MLCC + 470uF Poscap - ATR2
- 1024uF MLCC + 3x470uF Poscap - ATR2
- 540uF MLCC - No ATR2

Legend:
- 4ph, ATRH1+3, 1pos
- 4ph, no ATR, 1pos
- ZLL_Max
- ZLL_Min
- 5ph, ATRH1+3, 3 pos
- 5ph, no ATR, 3 pos
- 4ph, no ATR, 540uF
Going Forward-
More digital advancement to come

- Advance signal warning from ASIC Load to power management devices
 - Today all control chips respond to current step event that has already occurred..... Delayed reaction
 - Can information in ASIC be characterized for load steps with advance communication of step loads and unloads in the system?
 - High speed bus can set the stage for faster communication of loads to control circuits for advancing response to loading in ASIC circuits.

- Intelligent communication between Power management and load
 - Control of voltage and current delivery to processor/ASIC load
 - Characterize load and power management in terms of voltage and current control
Summary

- Digital communication from power management control devices to the system and load infrastructure is required.
- Diagnostics, telemetry, fault information, predictive failure management, and black box info are in process of use at various stages.
- Digital algorithms for control and transient response are improving overall loss management in all current and voltage dynamics for the processor/ASIC loads.
- More control will be seen between the processor/ASIC loads and the power management devices to control voltage and current through all the various runtime events that occur in the silicon architectures going forward.