High Efficiency UPS
Operating Modes

A Hedge for Uncertain Data Center Utility Costs

Chuck Heller
Sr. Product Manager
Liebert Corporation
Caveat!
No one UPS is all things to all people!

- What is Your Overall Data Center Strategy?
 - Redundancy WITHIN the data center vs. redundant DATA CENTERS
 - Bricks & Mortar vs. Containerized or other pre-fab
 - New construction or renovation/expansion of existing sites
 - Criticality of the data

- Efficiency
- Flexibility
- Availability
- Maintainability
- Expectations, training, and competence of operators
 - Safety
- Regional conditions, regulatory environment, plus energy availability and costs
- WHAT WILL THE FUTURE LOOK LIKE?
The Need for Energy Efficiency

- Efficiency and cost containment are among the top concerns of data center managers
 - 2010 DCUG report: 44% of Data Center Managers cited it as their top concern

- 5-6% of a data center’s utility cost goes into powering the uninterruptible power supply (UPS)
 - Typical Enterprise UPS operate at 92% - 94% efficiency
 (Legacy <90% efficient, new technology > 95% efficient in double conversion)
 - Example: Utility costs of $700,800 to power the IT
 - $67,000 goes to UPS operation (losses)

- Energy saved reduces cooling load (1 watt to cool 3 watts)

Ex: A 5,000 sq ft data center, 800 kW of IT @ 10 cents per kwhr
First: What Limits UPS Efficiency?

- Losses occur during the conversion of current

<table>
<thead>
<tr>
<th>Loss Category</th>
<th>Typical Loss Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectifier (AC-DC) Losses</td>
<td>1.8% - 2.5%</td>
</tr>
<tr>
<td>Inverter (DC-AC) Losses</td>
<td>1.9% - 3.5%</td>
</tr>
<tr>
<td>Cooling / Controls etc.</td>
<td>0.7% - 1.8%</td>
</tr>
<tr>
<td>TOTAL LOSSES:</td>
<td>4.4% - 7.8%</td>
</tr>
</tbody>
</table>
Efficiency Improvement Opportunity

- Ability to improve the efficiency of the UPS
 - By literally bypassing the inverter and rectifier
 - Shutting off unneeded systems (inverter and/or rectifier, fans, etc.)
 - Switch over to “standard operating mode” when conditions arise

- Significant efficiency gains, especially at high loads
- 2% to 8% improvement
- Increased UPS efficiency translates to lower power bills
- 8% gain translates to $xxxx per year in savings

What’s New?
- Multi-modal UPS’s with sophisticated control algorithms
- Intelligent Paralleling

![Graph showing efficiency improvements](image)
Three Modes of UPS Operation
(as defined by IEC 602040-3)

VFI: Voltage & Frequency of the output is Independent of the input voltage
- Double Conversion UPS
- Highest level of power conditioning
- **Efficiencies up to 96%**

VFD: Voltage & Frequency of the output is Dependent on the input voltage
- Off-Line UPS
- No power correction (volts in = volts out)
- **Efficiencies up to 99%**

VI: Voltage of the output is Independent of the input voltage
- Line interactive UPS
- Corrects sags, harmonics, input PF, & swells but not frequency
- **Efficiencies of 96% to 98%**
When to Use or Not Use High Efficiency Modes

Three General Approaches

- Based on Utilization
- Based on Site History vs Equipment Tolerances
 - ITIC, IEC, or CBEMA Curves
 - Control Algorithms which manage total power quality
- Avoid based on advanced knowledge of known risk
 - storms, when running on generator

Server Utilization in Virtualized Environment

Power Disturbances vs. Equipment Tolerances

Opportunities for High Efficiency Operation
Risks

- There is a tradeoff between efficiency and availability
- Misunderstanding of UPS performance specs can lead to availability or efficiency results below expectations
- Excessive use of contactors and breakers
 - Shorten the expected useful life and lead to failures and outages
 - Many devices were not designed to operate in this manner
Best Practices

- Consider UPSs which offer multiple operating modes including double conversion.
- Utilize your high efficiency modes when conditions are right:
 - When power quality conditions permit
 - During non-critical times of data center operation
 - When known risk factors are NOT present
- Be aware of conditions that result in high rates of battery cycling and understand how the UPS you choose behaves under those conditions:
 - Impacts choice of UPS and/or battery plant.
- Use advanced control techniques for optimal and automatic UPS mode selection:
 - A UPS which learns and knows when it can safely operate in high efficiency modes
- Look for a UPS which can use the inverter as an active filter while operating in high efficiency (VI) mode
- Utilize a continuous duty static switch instead of momentary duty.
Other Considerations

- When figuring your true savings, use a weighted average taking into account a mixed mode of operation.
- Request the efficiencies for each of the operating modes.
 - EnergyStar will soon release guidelines for efficiency for the various modes.
- There are efficiency advances being made in power distribution as well as UPS.
 - High Efficiency Transformers (TP1)
 - 4-Wire Transformer Free Distribution
- Understand the tolerances of your load.
 - CBEMA (8 ms), IEC(10 ms), or ITIC (20 ms) Compliant
- Understand what power quality tolerances will be maintained in the high efficiency modes.
 - Voltage level to the critical load
 - THDi?
 - Input PF?
Intelligent UPS Paralleling (aka “Circular Redundancy”)

- UPS efficiencies follow a curve; typically less efficient when load <50% of capacity
- When deploying multi-module UPS, loading is often not optimal for efficiency
 - Example:
 - Two 600 kW UPS modules (capacity system) are supporting a 400 kW load, each one is operating at about 33% of its capacity.
 - But, peak efficiency is at 67%
 - Result: 1.4% loss of efficiency
UPS High Efficiency Modes of Operation, “Intelligent Paralleling”

- Stand-by unit idled
- Schedule based on load operations
- Distribute operations to all modules

3 Units @ 25% Load = 91.5% Efficiency
2 Units @ 38% Load = 93.5% Efficiency
Optimizing Multi-Module Operating Efficiencies

Intelligent Paralleling

- Firmware intelligence
- Increases the efficiency of a multi-module system by idling unneeded inverters or whole modules
- Maintains user programmed levels of capacity and distributes off-time equally between modules
- Increases capacity on demand
- Maintains battery charging at all times
 - Several methods used
Intelligent Paralleling + High Efficiency Operating Modes

Optimized Efficiency Levels

![Graph showing efficiency levels over load](image_url)

<table>
<thead>
<tr>
<th>System data</th>
<th>AC/AC efficiency VFI mode @ nominal input conditions with resistive load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(%)</td>
</tr>
<tr>
<td>- 25% load</td>
<td>(%)</td>
</tr>
<tr>
<td>- 50% load</td>
<td>(%)</td>
</tr>
<tr>
<td>- 75% load</td>
<td>(%)</td>
</tr>
<tr>
<td>- 100% load</td>
<td>(%)</td>
</tr>
</tbody>
</table>

AC/AC Efficiency VFD mode

![Image of EMERSON CLORIDE Trinergy](image_url)
Summary, Efficiency (AC)

<table>
<thead>
<tr>
<th>Technology</th>
<th>UPS</th>
<th>PDU Transformer</th>
<th>Server</th>
<th>End-to-End Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legacy (VFI Only)</td>
<td>Legacy 90%</td>
<td>Legacy 97%</td>
<td>Legacy 84%</td>
<td>73%</td>
</tr>
<tr>
<td>Today - Standard Mode</td>
<td>VFI (Dual Conv.) 94.5%</td>
<td>EPA TP1 98.5%</td>
<td>Today 92%</td>
<td>85.5%</td>
</tr>
<tr>
<td>Today – High Efficiency Modes</td>
<td>VI (Line Interactive) 97%</td>
<td>EPA TP1 98.5%</td>
<td>Today 93%</td>
<td>89%</td>
</tr>
<tr>
<td>VFD (Static Bypass)</td>
<td>99%</td>
<td>No PDU Xformer 100%</td>
<td>Next Gen 95%</td>
<td>94%</td>
</tr>
</tbody>
</table>

End-to-End includes UPS, PDU and Server from input to 12Vdc
Conclusions

- High Efficiency Modes and Intelligent Paralleling capabilities provide cost-effective approaches to reducing current and future energy costs.
- Some UPSs can still manage power quality while delivering significant power savings.
- There will be some tradeoffs between availability and efficiency, so consider all the factors in making your decision.
Thank You!

Chuck Heller
Sr. Product Manager
Liebert Corporation
975 Pittsburgh Drive
Delaware, OH 43014

T 740 833 8542
F 740 833 8631
M 614 397 7806

chuck.heller@emerson.com