Installing Redhat 6.1 or SuSE SLES 11 SP1 in a System z FCP Environment - Hands-on-Lab

Richard Lewis - rflewis@us.ibm.com
John Schnitzler Jr – jnschnit@us.ibm.com
Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

- ESCON*
- HiperSockets
- IBM*
- IBM eServer
- IBM logo*
- Multiprise*
- PowerPC*
- S/390*
- System z9
- VM/ESA*
- z/VM*
- zSeries*
- FICON*

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

- Intel
- Java
- Lotus, Notes, Domino
- Linux
- Microsoft, Windows, Windows NT
- SET and Secure Electronic Transaction
- UNIX

All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM’s future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of these claims for use in other geographies must be reviewed by the local country counsel for compliance with local laws.
Agenda

- **Introduction**
 - Brief History of Linux®
 - Hardware Requirements and Linux Distributions
 - Linux File System and Common Linux Commands
 - Intro to Lab and Installation Overview

- **Basic Lab Exercises**
 - Installation of Linux on System z
 - Marist (2.2)
 - SUSE SLES11 SP1 (2.6) (installed on FCP attached SCSI devices)
 - Red Hat Enterprise Linux 6.1 (2.6) (installed on FCP attached SCSI devices)

- **Basic Linux System Administration**

- **Elective Lab Exercises**
 - Create a multi-path logical volume (SUSE/Red Hat)
 - Rebuild the Linux Kernel (Marist)
 - Using Linux as a Firewall
 - Using Linux as a DNS with BIND
 - File serving with Samba
 - Apache Web Server Installation and Customization
 - KDE Installation
Brief History of Linux
What is Linux?

- Linux is the kernel of a UNIX® technology (-like) operating system, originally developed by Linus Torvalds.
- It was developed / tested by the Open Source community.
 - Highly disciplined / structured
 - High quality
 - Secure
 - Stable
- Not just for Intel® processor-powered PCs
 - PowerPC®, Sparc, Alpha, System z ...
 - Over 100 platforms supported today.
What is Linux on IBM System z?

- A native IBM System z operating environment
 - Pure Linux, an ASCII environment
 - Exploits IBM System z hardware, including IEEE floating point
- Not a unique version of Linux or other operating system
- Not a replacement for other IBM System z operating systems
Hardware Requirements
Linux Distributions
Hardware Requirements

- **Processors**
 - IBM zEnterprise System (z196 and z114)
 - Z10 EC, z10 BC, z9 EC, z9 BC, z990, z800, z900
 - 9672 G2 - G6 (IBM only supports G5+)
 - Multiprise® 2000 (not supported by IBM)
 - Multiprise 3000
 - P/390, R/390, Integrated Server (not supported by IBM)

- **Central storage**
 - 256MB - 768MB minimum available for installation

- **DASD**
 - At least one
 - ECKD 3390-9 DASD device or
 - FCP attached SCSI LUN of 5GB or more

- **System console**
 - Hardware Management Console (LPAR or basic mode)
 - Virtual 3215 console (VM)

- **Workstation with CD-ROM for installation**

- **Network connectivity is required to acquire installation materials**
Major Distributions

- **SUSE LINUX - Enterprise Server 11 for IBM Mainframes**
- **Red Hat — Enterprise Linux 6**
 - www.redhat.com
- **Marist College - 2.2.16 kernel**
 - [linux390.marist.edu](http://www.marist.edu)
- **Debian — GNU/Linux Version 3 for S/390**
 - www.debian.org/ports/s390/
- **Slackware - Slack/390**
 - http://www.slack390.org
- **CentOS**
 - http://www.centos.org/
One Important Web Site

www.linuxvm.org
Linux File System
File System Structure (Marist Lab System)
Directory Usage

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>root directory</td>
</tr>
<tr>
<td>/boot</td>
<td>boot files (kernel, parm file, system map)</td>
</tr>
<tr>
<td>/home</td>
<td>user directories</td>
</tr>
<tr>
<td>/dev</td>
<td>device files that represent system hardware</td>
</tr>
<tr>
<td>/etc</td>
<td>important system configuration files</td>
</tr>
<tr>
<td>/bin</td>
<td>commands needed to start the system</td>
</tr>
<tr>
<td>/sbin</td>
<td>critical system binaries, commands reserved for the superuser</td>
</tr>
<tr>
<td>/usr/doc</td>
<td>documentation files</td>
</tr>
<tr>
<td>/usr/man</td>
<td>manual files</td>
</tr>
<tr>
<td>/usr/src</td>
<td>source code for the system software</td>
</tr>
<tr>
<td>/usr/src/linux</td>
<td>the kernel sources</td>
</tr>
<tr>
<td>/tmp</td>
<td>temporary files</td>
</tr>
<tr>
<td>/var</td>
<td>configuration files (linked from /usr)</td>
</tr>
<tr>
<td>/lib</td>
<td>shared libraries</td>
</tr>
<tr>
<td>/proc</td>
<td>the process file system</td>
</tr>
<tr>
<td>/mnt</td>
<td>mount point for temporarily mounted filesystems</td>
</tr>
<tr>
<td>/usr</td>
<td>additional utilities and applications</td>
</tr>
</tbody>
</table>
Basic Configuration Files

/etc/fstab - tells Linux what filesystems to mount when it starts
/etc/inittab - parameters for the init process
/etc/sysconfig/network - general network configuration for Red Hat and Marist Linux

/etc/sysconfig/network-scripts/ifcfg-iucv0
/etc/sysconfig/network-scripts/ifcfg-ctc0
- interface specific configuration files for Red Hat and Marist Linux

/etc/motd - "Message of the Day" file, contents are displayed when users login
/etc/passwd - Contains user names, numbers, home directories, and login shell
/etc/group - Contains user groups
/etc/shadow - Contains passwords
/etc/hosts - Contains hostname to IP address assignments.
Linux Commands
Linux Commands Used in Class

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>adduser</td>
<td>Creates a directory and an entry in the passwd file for a new user</td>
<td><code>adduser userid</code></td>
</tr>
<tr>
<td>cat</td>
<td>"Concatenate" View, create, and concatenate files</td>
<td><code>cat [options] [inputfile] [outputfile]</code></td>
</tr>
</tbody>
</table>
| **cd** | "Change Directory" Used to change from your current working directory to another directory | `cd directory | ~username` | `cd /mnt/etc` Change directory to /mnt/etc
`cd ~linlab01` Change directory to /home/linlab01 |
| **cp** | "Copy" Copy a file | `cp source destination` | `cp fstab fstab.save` |
| **dasdfmt** | "DASD Format" Formats a device to be managed by the LINUX dasd driver | `dasdfmt [-tvy] [-s start_track] [-e end_track][-b blocksize] -f devicename | -n 390_devno`
where:
- `v` = verbose, to display more messages
- `y` = omits the prompt to reconfirm the format request
- `t` = test mode (the device will not be formatted) | `dasdfmt -f /dev/dasda -b 4096`
Formats device /dev/dasda with a blocksize of 4096 |
Linux Commands Used in Class

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>"disk free"
Reports file system disk space usage</td>
<td>df [-h]
where -h = display output in more human readable form
df -h</td>
</tr>
<tr>
<td>du</td>
<td>"disk used"
Reports the space occupied by the current (or named) directory and all directories within it</td>
<td>du [directory] [-sh]
where -h = display output in more human readable form
du -h</td>
</tr>
<tr>
<td>ed</td>
<td>"edit"
Invokes the ed text editor</td>
<td>ed filename</td>
</tr>
<tr>
<td>find</td>
<td>Locate files in a directory based on search criteria</td>
<td>find [/directory]
[-name filename]
[-atime (+-)
days_since_last_access]
[-mtime
days_since_last_modified]
[-ok command {}]
[-print]
find /home -name temp size +100 -atime +5 ok rm {}
Finds files named temp in the home directories larger than 100 blocks that have not been accessed in the last 5 days. When a file is located, you are asked if you want to delete</td>
</tr>
<tr>
<td>free</td>
<td>Display amount of free and used memory</td>
<td>free</td>
</tr>
</tbody>
</table>
Linux Commands Used in Class

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
</table>
| gcc | gcc [-o output_filename] [options] source_filename | gcc -o mountpw mountpw.c
Compile the mountpw.c file into a binary executable file called mountpw. |
| ifconfig | ifconfig [interface options | address] | ifconfig iucv0 9.130.240.161 pointopoint 9.130.240.101 mtu 9216
Activate the iucv0 interface at IP address 9.130.240.161 with a point-to-point connection to IP address 9.130.240.101 using a Maximum Transmission Unit size of 9216 bytes. |
| kill | kill [PID] [-options] | kill 93 -HUP
Stop process number 93 and restart |
| last | last | lastlog |
| lastlog | Format and print contents of the last login file | lastlog |
Linux Commands Used in Class

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
</table>
| **ln** | "link"
Creates a link between one file and another. This allows the file to be located in one place and referenced in another.
`ln [-s] source linkname`
where: `-s = symbolic link` | `ln -s init.d/named S60named`
Creates a symbolic link which allows you to reference the file "named" in the "init.d" directory by the linkname of "S60named". |
| **ls** | "list"
Displays the contents of a directory
`ls [-al]`
where: `-a = all
`l = long format` | `ls -al`
Lists all files in the current directory in the long format. |
| **mkdir** | "Make directory"
Creates a sub-directory under the current working directory
`mkdir directory_name` | `mkdir boot`
Creates an empty directory called "boot". |
| **mke2fs** | "make ext2 file system"
Creates a native LINUX ext2 file system
`mke2fs devicename [-b blocksize]` | `mke2fs /dev/mnda -b 4096`
Creates a file system of type ext2 on device mnda with a blocksize of 4096. |
| **mkswap** | "make a swap partition"
Used to create a LINUX swap partition
`mkswap partitionname` | `mkswap /dev/mndb`
Makes minidisk device /dev/mndb a swap partition. |
Linux Commands Used in Class

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>mount</td>
<td><code>mount [-t type] [-o accesstype] device mountlocation</code></td>
<td><code>mount -t ext2 -o ro /dev/mnda /mnt</code>
Makes device mnda, which contains an ext2 file system, accessible to the Linux system at location (directory) mnt, with read-only access.</td>
</tr>
<tr>
<td>mv</td>
<td><code>mv source destination</code></td>
<td><code>mv ifcfg-ctc0 ifcfg-iucv0</code>
 Renames the file ifcfg-ctc0 to ifcfg-iucv0</td>
</tr>
<tr>
<td>nslookup</td>
<td><code>nslookup</code></td>
<td><code>nslookup</code>
Usage: Enter "nslookup" to begin an interactive session with the tool. Enter a host name. nslookup will respond with the fully qualified name of the host and it's IP address. To end the interactive session, enter</td>
</tr>
<tr>
<td>passwd</td>
<td><code>passwd userid</code></td>
<td><code>password linlab01</code>
Enter the password when prompted.</td>
</tr>
</tbody>
</table>
Linux Commands Used in Class

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>ps</td>
<td>"process" Displays the processes running on your system. Often used in conjunction with the kill</td>
<td>ps [-efl] where: e = select all processes f = provide full output listing l = display in the long</td>
</tr>
<tr>
<td>rm</td>
<td>"remove" Erase a file</td>
<td>rm filename</td>
</tr>
<tr>
<td>route</td>
<td>Used to manipulate the Linux kernel's routing table.</td>
<td>route [interface options]</td>
</tr>
<tr>
<td>rpm</td>
<td>"Redhat Package Manager" Installs products packaged by the Redhat Package Manager</td>
<td>rpm [-ivh --nodeps] [-qlp] packagename.rpm where: --nodeps = no dependency checking i = install a new package v = verbose h = display a progress indicator (hash marks) during installation q = query package info l = list all files in the package p = queries the packagefile</td>
</tr>
</tbody>
</table>
Linux Commands Used in Class

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>shutdown</td>
<td>`shutdown [-r</td>
<td>-h] [now]` where: h = halt the system after it shuts down r = reboot after shutdown now = start the shutdown process immediately without warnings to</td>
</tr>
<tr>
<td>silo</td>
<td>silo [-f image_file] [-d boot_device] [-p parmfile] [-b boot_sector_file] -t2 Note: -t2 indicates "test level 2". Although this is not a parameter you would expect to use, it is still necessary at the current kernel level to write the IPL record.</td>
<td><code>silo -f image.vm.bin -d /dev/dasda -p image.vm.parm -b ipleckd.boot</code> Creates an IPL record on device /dev/dasda using the image.vm.bin kernel image, the image.vm.parm kernel parameter file, and the ipleckd.boot boot sector file.</td>
</tr>
<tr>
<td>swapon</td>
<td><code>swapon partitionname [-s]</code> where: s = display usage information</td>
<td><code>swapon /dev/mndb</code> Tells Linux to begin using the swap partition /dev/mndb</td>
</tr>
<tr>
<td>tail</td>
<td><code>tail [-number_of_lines] filename</code> The default number of lines shown is 10</td>
<td><code>tail -20 /var/log/messages</code> Displays the last 20 lines of the file "messages"</td>
</tr>
</tbody>
</table>
Linux Commands Used in Class

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tar</code></td>
<td>tar [-xzvfc] input_fn</td>
<td>tar -xzv /tmp/initfs_big_Marist.tgz</td>
</tr>
<tr>
<td></td>
<td>output_fn</td>
<td>Extracts and uncompresses the files and directory structure from the file named initfs_big_Marist.tgz, listing all files as it works.</td>
</tr>
<tr>
<td></td>
<td>where: x = extracts files and directories from an archived file</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z = zip (compress) or uncompress files</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v = verbose - tells tar to list the files being archived or unarchived</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f = specifies a filename for the archive file</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c = creates an archive file</td>
<td></td>
</tr>
<tr>
<td><code>top</code></td>
<td>Display top CPU processes</td>
<td>top</td>
</tr>
<tr>
<td><code>umount</code></td>
<td>Unmount a mounted file system</td>
<td>umount mountlocation</td>
</tr>
<tr>
<td><code>uptime</code></td>
<td>Tell how long the system has been running</td>
<td>uptime</td>
</tr>
<tr>
<td><code>w</code></td>
<td>Show who is logged on, and resource usage</td>
<td>w</td>
</tr>
<tr>
<td><code>who</code></td>
<td>Show who is logged on</td>
<td>who</td>
</tr>
<tr>
<td><code>whoami</code></td>
<td>Show effective userid</td>
<td>whoami</td>
</tr>
</tbody>
</table>
ed Editor

- The ed editor has two modes:

 - Command mode - everything you type in is considered to be a command. Some commands you will be using are:
 - `number` positions the editor at line number
 - `a` append (add) text after the current line
 - `c` change a line
 - `i` insert text before the current line
 - `d` delete the current line
 - `p` display (print) lines
 - `w` save (write) lines
 - `q` end (quit) the editing session
 - `.` refers to the current line
 - `$` refers to the last line

 - Input mode - after you have entered the `a`, `c`, or `i` subcommands, everything that follows will be text, until a period (.) is entered on a line by itself.
Sample ed Session

```
ed fstab
1 .c
/dev/mnda  /  ext2  defaults,errors=remount-ro 0 1
1,$p
1,$w
q
```

- This sequence of commands will:
 - begin editing on the file "fstab"
 - position the editor at line 1 in the file
 - indicate that the line is to be changed
 - enter the exact text that should replace the current line of text
 - indicate the end of changes
 - position the editor at line 1 and display (print) the file
 - position the editor at line 1 and save (write) the file
 - end (quit) the editing session
Installation Overview
Basic Installation Steps

- Acquire Linux Distribution
 - Kernel image
 - Ram disk
 - File system

- Prepare Environment
 - Configure virtual machine or LPAR
 - Gather network parameters
 - Create a boot parameter file
 - Provides information needed by the kernel at boot time
 - `mem=` defines the amount of storage to be used by Linux
 - `mdisk=` specifies the devices to be used by the minidisk driver (VM)
 - `dasd=` specifies the devices to be used by the dasd driver
 - `iucv=` identifies the virtual machine(s) to be connected via IUCV (VM)
 - `root=` specifies the device containing the root file system

- Load the kernel, parm file and ram disk into storage

- Build the file system and configure system
Initial System Build

1. Kernel-image
 VM based

2. Parm file

3. initrd

Blocksize = F 80

Pun to RDR

IPL-RDR

Blocksize = F 1024

initrd

Parm file

Parm file

Kernel-image
tape based

parm file

Kernel

IPL-Tape

Write to Tape

x'000000'
Build and Configure File System

Now that Linux is up and running you can

- Create the file system
- Create a swap volume
- Make the system bootable
 - Format a boot device
 - Put boot files on the device
 - kernel image
 - parameter file
 - IPL text
 - Run Silo (2.2.16) or zipl (2.4+)
Hands-On Lab - Virtual Machine Configuration

mem=128m
mdisk=200,202,400
dasd=300
root=/dev/mnda ro

Shared Volume
400 mdisk /dev/mndc

memory

swap partition

Large file system
200 mdisk /dev/mnda

boot device
202 mdisk /dev/mndb

300 dasd /dev/dasda
Lab Network Configuration
Marist

Class Network

IBM System z

LINLAB01 9.82.56.131
TCP/IP 9.82.56.1 9.82.56.30
LINLAB30 9.82.56.160

IUCV

CP
Lab Network Configuration
Red Hat Enterprise Linux 6.1 & SUSE SLES11 SP1

IBM System z

TCP/IP
9.82.56.1

LINLAB01
9.82.56.91

LINLAB30
9.82.56.120

Guest LAN

IBM System z