Framework for Doing Capacity Sizing for System z Processors

Summer 2009
Share session: 2115

Bradley Snyder
Email Address: bradley.snyder@us.ibm.com
Phone: 972-561-6998
Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

<table>
<thead>
<tr>
<th>trademark</th>
<th>trademark</th>
<th>trademark</th>
<th>trademark</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlphaBlox*</td>
<td>GDPS*</td>
<td>RACF*</td>
<td>Tivoli*</td>
</tr>
<tr>
<td>APPN*</td>
<td>HiperSockets</td>
<td>Redbooks*</td>
<td>Tivoli Storage Manager</td>
</tr>
<tr>
<td>CICS*</td>
<td>HyperSwap</td>
<td>Resource Link</td>
<td>TotalStorage*</td>
</tr>
<tr>
<td>CICS/VSE*</td>
<td>IBM*</td>
<td>RETAIN*</td>
<td>VSE/ESA</td>
</tr>
<tr>
<td>Cool Blue</td>
<td>IBM eServer</td>
<td>REXX</td>
<td>VTAM*</td>
</tr>
<tr>
<td>DB2*</td>
<td>IBM logo*</td>
<td>RMF</td>
<td>WebSphere*</td>
</tr>
<tr>
<td>DFSMS</td>
<td>IMS</td>
<td>S/390*</td>
<td>xSeries*</td>
</tr>
<tr>
<td>DFSMShsm</td>
<td>Language Environment*</td>
<td>Scalable Architecture for Financial Reporting</td>
<td>z9*</td>
</tr>
<tr>
<td>DFSMSmm</td>
<td>Lotus*</td>
<td>Sysplex Timer*</td>
<td></td>
</tr>
<tr>
<td>DirMaint</td>
<td>Multiprise*</td>
<td>Systems Director Active Energy Manager</td>
<td>z10 BC</td>
</tr>
<tr>
<td>DRDA*</td>
<td>MVS</td>
<td>System/370</td>
<td>z10 EC</td>
</tr>
<tr>
<td>DS6000</td>
<td>OMEGAMON*</td>
<td>System p*</td>
<td>z/Architecture*</td>
</tr>
<tr>
<td>DS8000</td>
<td>Parallel Sysplex*</td>
<td>System Storage</td>
<td>z/OS*</td>
</tr>
<tr>
<td>ECKD</td>
<td>Performance Toolkit for VM</td>
<td>System x*</td>
<td>z/Vm*</td>
</tr>
<tr>
<td>ESCON*</td>
<td>PowerPC*</td>
<td>System z</td>
<td>z/VSE</td>
</tr>
<tr>
<td>FICON*</td>
<td>PR/SM</td>
<td>System z9*</td>
<td>zSeries*</td>
</tr>
<tr>
<td>FlashCopy*</td>
<td>Processor Resource/Systems Manager</td>
<td>System z10</td>
<td></td>
</tr>
</tbody>
</table>

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdraw at without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.
Agenda

- CPU Sizing or Capacity Planning??
- End to End Process of CPU Sizing
 - Role of Performance Management
 - Describing the Current Environment
 - Specialty Processors
 - Estimation Confidence
 - Post-Install Analysis
- Summary

Suggested Follow-Up Sessions:
- 2110 – zPCR Capacity Sizing Lab – Part 1 Introduction and Overview
 - Wed 1:30 PM – John Burg
- 2111 – zPCR Capacity Sizing Lab – Part 2 Hands on Lab
 - Wed 4:30 PM – John Burn and Bradley Snyder
Is it Capacity Planning or CPU Sizing?

- Terms are often used interchangeably, but they mean different things, and imply different activities

- CPU Sizing
 - Done in preparation for a processor change
 - One time effort
 - Aimed at verifying a proposed change

- Capacity Planning
 - Ongoing, with system utilization checked against a multi-period plan
 - Evaluates new applications
 - Identifies and manages workload growth at a business function level
 - Goal of forecasting capacity upgrades 3-6 months in advance
End to End CPU Sizing Process

- Describe the steps and considerations in the process
 - Identify points where expectations should be clearly set
- Identify areas which cause increased complexity and may raise the risk associated with the plan
- Identify practical approaches to handling unknowns
 - Solicit input
 - Evaluate current system(s) performance
 - Create Capacity Relationships of Current Processors
 - Establish “End Game” configuration
 - Establish Capacity Relationships of Future Processors
 - Generate the Plan
 - Set Capacity Expectations
 - Identify Post-Install Requirements
Acceptable Use of MIPS

- It is acceptable to use a MIPS designation for a processor in the planning process as long as the capacity ratios between relative processors agrees with the output of a zPCR study!
 - Do Not use primitive LSPR data because these LSPR ratios do not include LPAR effects of specific processor configurations
 - zPCR is based on LSPR information but factors additional information into the relative capacity relationships it creates
 - zCP3000 uses zPCR for detailed capacity planning
Multi-Image Table and Single Image Table

- **Multi-image (MI) Processor Capacity Ratio table**
 - Average complex LPAR configuration for each model based on customer profiles
 - Most representative for vast majority of customers
 - Same workload assumed in every partition
 - z/OS only
 - Use for “high level” sizing
 - Used to develop the MSU rating

- **Single-image (SI) Processor Capacity Ratio table**
 - One z/OS partition equal in size to N-way of model (limit to max CPs supported by SCP version)
 - Representative for truly single image z/OS cases
 - Used as the base for zPCR LPAR Configuration Capacity Planning

- Workload impacts the mixes
zPCR Workload Mixes

- Do NOT use LSPR primitives to describe capacity relationships
 - z/OS V1R9 primitives:
 - ODE-B, CB-L, WASDB, OLTP-T, and OLTP-W
- IBM recommends using pre-built mixes
 - Most customer workloads will fit closely with one of several pre-built mixes in zPCR
 - z/OS V1R9 mixes are:
 - LoLO-Mix
 - CB-Mix
 - TM-Mix
 - TD-MIX
 - TI-Mix
 - Web-Mix
 - LSPR-MIX
Low IO Workload MIX

<table>
<thead>
<tr>
<th>LPAR</th>
<th>SSCH Rate</th>
<th>USED MSU</th>
<th>SSCH/MSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS1</td>
<td>7,000</td>
<td>300</td>
<td>23.3</td>
</tr>
<tr>
<td>STST</td>
<td>650</td>
<td>35</td>
<td>18.9</td>
</tr>
<tr>
<td>Total</td>
<td>7,650</td>
<td>335</td>
<td>22.8</td>
</tr>
</tbody>
</table>

USED MSU =

(Processor MSU Rating x CEC Utilization by LPAR)

Cannot use MSU value in multi-image table, use the CP calculator workload selection assistant tool within zPCR

- SSCH per Used MSU is <= 30
- Systems with a low I/O content should use proportionately higher amounts of WASDB and OLTP-W
- Most typical mix used by customers
Workload Mixes

- If multiple LSPR tables are necessary to characterize capacity, the five mixes can be used to assure consistency
 - The underlying LSPR workload primitives available in the various tables are different and cannot be used directly
 - Similar mixes of the same name are available in both the System z LSPR data and the legacy LSPR data and can be used

- LSPR-Mix is not intended to be useful for capacity planning purposes
 - Only simple average of five primitives used to generate software pricing

- LSPR Information can be found at:
Solicit Input and Document Assumptions

- Understand rational for the processor change
- Identify key parameters involved in the study
 - Data requirements
 - Specific time of day to evaluate capacity
 - Client defined MIPS ratings for current processors
 - Planning process will define MIPS ratings for proposed processors
 - Available information on growth rates or new workloads
- Identify key capacity guidelines, i.e.,
 - New processor can't be more than 90% busy
 - Certain LPARs can't be on the same footprint
 - Batch window can't elongate
 - Etc.
Obtain Performance Data

- CPU Sizing ASSUMES the system is well tuned
- Generally SMF Records 70:78 are used for Analysis
 - SMF 30 records sometimes used
- A good planning process will still make some rudimentary checks to evaluate the performance of the system
 - Latent demand in an LPAR
 - Latent demand in a CP (single TCB architectures)
 - Latent demand in Job queues
 - Consistently high utilization
 - Well-running I/O subsystem
 - No processor storage contention
 - Good z/OS capture ratio
- Evaluate the WLM setup to ensure the workloads have enough granularity to get a reasonable view of the system
 - Need to look at the report class granularity
Performance Data – Red Flags

- Uneven Utilization patterns
 - Could have been an outage, problem, holiday, etc.
 - Identify and decide if need to eliminate data
- Low utilization
 - Processor utilization affects the efficiency hardware and software
- High amounts of Latent Demand
 - Needs to be identified in the plan
- Poorly performing I/O subsystem
- Processor storage contention
A Few Charts can tell a lot....
Describe the Current Environment

- Identify current processors involved in the study
- Create a reference processor
 - Use only one CEC's input on processor size, even if more CECs are involved
- Pick pre-defined workload mix for each LPAR
 - Description of dominant LPAR is often sufficient
 - Verify the custom mix for each identified time period
 - Prime shift peak hour
 - Key batch window
 - Monthly/Quarterly/Yearly close

Pick 1 processor as the starting point

<table>
<thead>
<tr>
<th>Processor</th>
<th>MIPS</th>
<th>LPARs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2084-310</td>
<td>3,595</td>
<td>8</td>
</tr>
<tr>
<td>2094-708</td>
<td>4,224</td>
<td>4</td>
</tr>
<tr>
<td>2097-705</td>
<td>4,230</td>
<td>4</td>
</tr>
</tbody>
</table>
Generate Capacity Relationships of Current Processors

- Input into zPCR
 - Number of Partitions
 - Number of processors
 - Including Specialty CPs
 - Workload Mix
- Example with z9-708 as base
 - Relative capacity vs. 2094-701 set to 1.00

<table>
<thead>
<tr>
<th>Processor</th>
<th>Relative Capacity**</th>
<th>New MIPS</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2094-708</td>
<td>6.8784</td>
<td>4,224</td>
<td>With this base, z9-701 becomes 614.1 MIPS</td>
</tr>
<tr>
<td>2084-310</td>
<td>6.0672</td>
<td>3,726</td>
<td>Old rating of 3,595 MIPS</td>
</tr>
<tr>
<td>2097-705</td>
<td>6.8035</td>
<td>4,178</td>
<td>Old rating of 4,230 MIPS</td>
</tr>
</tbody>
</table>

** based on LOIO mix
LPAR Impacts on Capacity

- n-way and MP effects will impact capacity
- LPAR 3 is a uni, but the hardware is running as an 8-way shared processor and the capacity is of an 8-way shared processor
 - 5 GCPs, 2 zIIPs, 1 zAAPs
- Number and how busy they are will affect capacity
- Only zPCR can help determine what true capacity delivered is

<table>
<thead>
<tr>
<th>LPAR 1</th>
<th>LPAR 2</th>
<th>LPAR 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS</td>
<td>z/OS</td>
</tr>
<tr>
<td>Weight = 400</td>
<td>Weight = 200</td>
<td>Weight = 100</td>
</tr>
<tr>
<td>LCP</td>
<td>LCP</td>
<td>LCP</td>
</tr>
<tr>
<td>LCP</td>
<td>LCP</td>
<td>LCP</td>
</tr>
<tr>
<td>zIIP</td>
<td>zIIP</td>
<td>zIIP</td>
</tr>
<tr>
<td>zAAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Capacity Planning and LPAR

- Examples of single z9 CEC with multiple LPAR configurations
 - On z10 with HIPERDISPATCH=YES, or z9 with IRD Vary CPU Management, logical engine configuration will closely match what is guaranteed by LPAR weight

- ITRRs shown are relative to z9-701 set at 1.00

<table>
<thead>
<tr>
<th>Case</th>
<th>Mode</th>
<th># of LPs</th>
<th>LP x LCP</th>
<th>LCP</th>
<th>ITRR</th>
<th>% Change</th>
<th>LCP:PCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>2094-720</td>
<td>1</td>
<td>1 x 20</td>
<td>20</td>
<td>14.78</td>
<td>Base</td>
<td>1:1</td>
</tr>
<tr>
<td>1</td>
<td>2094-720</td>
<td>2</td>
<td>2 x 10</td>
<td>20</td>
<td>15.62</td>
<td>5.7%</td>
<td>1:1</td>
</tr>
<tr>
<td>Base</td>
<td>2094-710</td>
<td>6</td>
<td>3 x 10 2 x 3 1 x 2</td>
<td>38</td>
<td>8.04</td>
<td>Base</td>
<td>3.8:1</td>
</tr>
<tr>
<td>1</td>
<td>2094-710</td>
<td>6</td>
<td>3 x 3 2 x 2 1 x 1</td>
<td>14</td>
<td>8.58</td>
<td>6.7%</td>
<td>1.4:1</td>
</tr>
<tr>
<td>2</td>
<td>2094-710</td>
<td>10</td>
<td>10 x 1</td>
<td>10</td>
<td>8.52</td>
<td>5.97%</td>
<td>1:1</td>
</tr>
</tbody>
</table>
Impact of Specialty CPs

- ICF and IFL Impact
 - For ICF engines
 • within 10% of the performance of a stand-alone CF of the same processor family
 • zPCR is the best source
 - ICF and IFL partitions use specialty Cps that compete for resources in their own CP Pool

- Impact of Specialty Engines on GP CPUs
 - Impact will vary based on utilization of specialty CP's
 • Can be slight (less than 10%) to the impact of a full n-way impact of another GP CPU
 - Capacity is characterized as independent partitions with their own LCPs that compete for resources within their assigned CP pool
 • Estimation given in zPCR assumes specialty processors are 90% busy
 - Example: impact of 6 zAAPs running at 50% busy
Specialty CP Example

<table>
<thead>
<tr>
<th>Partition Type</th>
<th>2094-712 with 6 zAAPs</th>
<th>2094-712 with no zAAPs</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RCPs</td>
<td>LCPs</td>
<td>Capacity</td>
</tr>
<tr>
<td>GP</td>
<td>12</td>
<td>12</td>
<td>5,349</td>
</tr>
<tr>
<td>zAAP</td>
<td>6</td>
<td>7</td>
<td>2,712</td>
</tr>
</tbody>
</table>

- z9 processor with 6 zAAPs
 - 2 LPARs defined
 - 1 with all 6 zAAPs
 - 1 with 1 zAAP
- zAAPs are running at 50% busy
 - Physically 50% busy, combined usage of both LPARs
- Capacity of GP CPU without zAAPs is 11% more than with
 - Addition of 597 MIPS
- If zAAPs are only 50% busy, than GP CP capacity is expected to be 5,648 instead of 5,349
 - Any loss of GP CP capacity is made up by 2,712 MIPS added by zAAPs
LPAR Utilization Cautions

- Lightly weighted LPARs might need more capacity when moving to newer processors
- Explore potential LPAR consolidation
 - Reduce need to run z/OS on uniprocessor
 - Virtual storage constraints need to be reviewed
 - Places greater emphasis on doing CICS consolidation to make fewer, larger CICS regions which can use more of the CP's capacity

- Understanding the impacts of LPAR on a uni-processor
 - Managing CPU-Intensive Work on Uniprocessor LPARs - white paper WP100925

- Running IBM System z at High Utilization
 - Running and how to manage processors at high utilizations – white paper WP101208
Estimation Confidence

- Major Configuration Changes
 - Accuracy of zPCR model for an upgrade is +/- 5% of the estimate
 - Variability comes from multiple sources
 - Workload mix used is an estimate, actual workload can vary throughout time
 - Interactions of LPAR peaks and valleys
 - Efficiency of buffering techniques which impact I/O, and hence quantity of interrupts, which drives rate of preemption
 - Hardware changes made after LSPR benchmarks

- Minor Configuration Changes
 - Adding 1 LPAR, 1 engine, or changing number of LCP
 - Much higher confidence
 - Newer versions of zPCR will include information on scope of change

- Capacity decisions should be made with knowledge of the confidence factors
MIPS Tables vs. zPCR Detailed LPAR Configuration Capacity Planning

- Objective: Upgrade z9 to z10 with like capacity and add 1 zlIP engine to largest LPAR for future workload growth and 3 new LPARs for Development and Testing

MIPS Table - LSPR Multi-Image z/OS 1.9 LSPR MIX

<table>
<thead>
<tr>
<th>Processor</th>
<th>N-way</th>
<th>MIPS TABLE</th>
<th>MSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2094-608</td>
<td>8-way</td>
<td>3,204</td>
<td>428</td>
</tr>
<tr>
<td>2097-704</td>
<td>4-way</td>
<td>3,237</td>
<td>401</td>
</tr>
</tbody>
</table>

Equivalent Capacity Expected

z9 3204 MIPS vs. z10 3237 MIPS = +1.0%

zPCR LPAR Configuration Capacity Planning

8 LPARs, 8GCPs, 0 zlIP

<table>
<thead>
<tr>
<th>Processor</th>
<th>2094-608</th>
</tr>
</thead>
</table>

Capacity Received

- 3,158 vs. 3,013 = -4.6%
- +5% Capacity Received

3,158 vs. 3,164 = +0.2%

-5% Capacity Received

3,158 vs. 2,862 = -9.4%

11 LPARs, 4GCPs, 1 zlIP

<table>
<thead>
<tr>
<th>Processor</th>
<th>2097-704</th>
</tr>
</thead>
</table>

z10 MIPS with 11 LPARs and 1 zlIP via zPCR

<table>
<thead>
<tr>
<th>Processor</th>
<th>3,013 GCP MIPS</th>
</tr>
</thead>
</table>

3839 Total MIPS

+22%
IBM System z Capacity Planning in a nutshell

Don't use “single-number tables” for capacity comparisons!

Use zPCR to model before and after configurations
Post Install Analysis

- Success Factors:
 - Evaluation is done as close to the install of the new processor as possible
 - Rebuild the capacity expectations to match the installed configuration
 - Critical applications are isolated into WLM definitions which allow a clear view of capacity
- Performance data is retained and available for analysis
- Changes not included in capacity estimation but should be factored
 - Change in operating system or middleware levels
 - Maintenance
 - Change in processor storage (impacts sort-based workloads)
 - Buffer pool changes
 - Use of dynamic SQLs
 - Rebinding of SQL on new processor
Summary

- Long ago, LPAR environments and associated complexity have caused straight MIPS charts to become obsolete.
- Don't use primitives!!
 - Highly recommended to use pre-built mixes in zPCR and zCP3000.
- Understand the current system performance and latent demand indicators of an upgrade.
- Use tools like zPCR / zCP3000 to get the best view of expected capacity.
- Set expectations with knowledge of confidence factors.
 - Confidence factor of +/- 5% on all upgrades.