
DEVELOP MAINFRAME SOFTWARE WITH OPENSOURCE SOURCE
CODE MANAGERS AND IBM DEPENDENCY BASED BUILD

International Business Machines

Dennis Behm

Nicolas Dangeville

Rosalind Radcliffe

October 15th, 2018

Version 1.0.1

© IBM Copyright, 2018 2 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

CONTENTS
Develop Mainframe Software with OpenSource Source code managers and IBM Dependency Based Build 1

Introduction ...5

What does SCM stand for? ..6

Mainframe Development practices and key concepts of modern SCMs and development7

Traditional Mainframe Library Managers VS. SCM Configurations...7

Working in full Configuration ..9

Foundational concepts of modern SCMs applied to git ... 10

Working in Releases... 13

Differences in building and deploying .. 13

Mainframe development and scopes.. 16

Layout of Dependencies of a Mainframe application .. 16

Applications and programs... 19

Applications and application groups ... 20

Cross-cutting interfaces .. 22

SCM scenarios ... 24

Develop at application Scope, then integrate and adopt new Interfaces... 24

Adoption process ... 27

SCM layout scenarios .. 28

Integration scenarios of shared Interfaces .. 38

Conclusion ... 57

Build scenarios .. 58

User build .. 58

Pipeline build .. 59

Build strategies in relation to discussed integration scenarios... 64

Conclusion ... 66

²ƘŀǘΩǎ ŎƻƳƛƴƎ ƛƴ ǇŀǊǘ ǘǿƻ.. 67

Appendix .. 68

Tables of figures ... 68

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 3 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 4 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

About the authors:

Dennis Behm, IBM Germany, dennis.behm@de.ibm.com

Nicolas Dangeville, IBM France, dangeville.n@fr.ibm.com

Rosalind Radcliffe, IBM U.S., rradclif@us.ibm.com

A very special thanks to the BNP Paribas team: Alexandre Antonescu, Sylvaine Caramelle, Pascal Rotilio and

Frédéric Soigneux.

Thank you to the following reviewers:

Bruce Green, IBM Development Manager RTC Enterprise Extensions, Dependency Based Build

Daniel Bruce, IBM Dependency Based Build Developer

Francois Dumont, IBM Offering Manager for IBM RTC Enterprise Extensions, Dependency Based Build

Jenny Nicholson, IBM Continuous Integration Program Manager

Jorge Diaz, IBM Consulting IT Specialist

Liam Doherty, IBM Senior Software Engineer

Suman Gopinath, IBM Solution Architect for DevOps for IBM Z

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 5 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Introduction

This document is intended as a reference for organizations who are interested in moving from traditional

mainframe library managers to a modern Software Configuration Management (SCM) system supporting

parallel development including branching and merging technologies.

This document outlines key differences between modern SCMs and traditional mainframe approaches. The

purpose is to review relevant areas required when moving to a modern SCM, comparing the capabilities

and providing explanations for how to adopt the new capabilities. There is an emphasis on how an existing

mainframe application can be componentized and how the application interfaces can be described and

managed, as well as then built. This paper is the first part of the story for a migration. Additional papers

will be published describing areas such as packaging and deployment.

In this paper we will use Git1 and Jenkins as the example modern capabilities. Git is the de-facto standard

for the open source community and is growing within major organizations. The industry estimates 48% of

the software configuration management is now taken by Git. Currently Jenkins2 is the most widely adopted

continuous integration coordinator for pipelines.

We will use IBM Dependency Based Build which enables you to implement mainframe build automation

with Git and Jenkins for traditional mainframe artifacts.

This document is intended for build administrators from both the distributed and traditional z/OS sides as

well as anyone interested in learning how traditional mainframe applications can take advantage of the

capabilities of modern development tools.

Please visit the IBM Dependency Based Build Community at http://ibm.biz/dbb_community to address

questions and comments regarding this paper and get in contact with the authors. Look for

https://github.com/IBM/dbb for additional help for developing your own IBM Dependency Based Build

scripts.

The landing page as well as the documentation links for IBM Dependency Based Build are:

https://developer.ibm.com/mainframe/products/ibm-dependency-based-build

https://www.ibm.com/support/knowledgecenter/SS6T76_1.0.1/welcome.html

1 https://git -scm.com/ Several distributions available, l ike GitLab, bitbucket, GitHub
2 https://jenkins.io/

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772
http://ibm.biz/dbb_community
https://github.com/IBM/dbb
https://developer.ibm.com/mainframe/products/ibm-dependency-based-build
https://www.ibm.com/support/knowledgecenter/SS6T76_1.0.1/welcome.html
https://git-scm.com/
https://jenkins.io/

© IBM Copyright, 2018 6 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

What does SCM stand for?
SCM is the abbreviation for Software Configuration Management; it is also used for Source Control

Management. Software Configuration Management is the task of tracking and controlling changes in the

software development process. SCM provides practices such as the tracking of the version of configuration

items. A group of fi les with a dedicated version is called a baseline of configuration items.

Software Configuration Management also includes the actual process of modifying the configuration items

and implements a way to control the change process, also known as change management.

A subfield of Software Configuration Management is Source Control Management which covers the

different areas of versioning configuration items, such as the isolation of different development activities

into branches as well as practices like tagging, merging, and check-in and check-out operations.

Software Configuration Management differs from the term of Software Change Management which is used

in the mainframe domain as the practice of version control and journaling the different changes between

versions in a library structure.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 7 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Mainframe Development practices and key concepts of
modern SCMs and development
Mainframe Software development started before the foundational concepts of configuration management

were adopted in software development practices. The next section is intended as a level set on how companies

are currently working with mainframe Library Managers and gives an introduction to the key concepts of

modern SCMs.

TRADITIONAL MAINFRAME LIBRARY MANAGERS VS. SCM CONFIGURATIONS

Most of the traditional mainframe solutions control l ibraries on the mainframe and therefore are called

library managers. The action to check out code from a repository is usually known as the reservation process

because fi les get locked by the developer for the time of their change request. This leads to a serialization

of processing change requests. Since only the fi les which the developer intends to edit are reserved and

copied to the development stage, there is only a small subset of the overall controlled fi les in the

development level. (This may be a single development level that all developersΩ changes are copied to or

may be a more isolated area with just the contents of a set of related changes known as a package.) To be

able to compile a program, the library manager relies on the concept of concatenation of the build path

through the SYSLIB, which means that the different stages are concatenated like a class path in Java

development.

LŜǘΩǎ use a scenario to clearly i l lustrate this concept. We assume four staging levels: development,

functional tests, acceptance test and production. In this environment three parallel paths have also been

defined. ¢ƘŜ ŘŜǾŜƭƻǇŜǊΣ ƭŜǘΩǎ Ŏŀƭƭ ƘƛƳ 5ƛǊƪΣ ƛǎ required to promote his change through these staging

environments. Depending on the library manager, when Dirk checks out the fi le it might be in a

development level or it might be in an isolated package. The first thing Dirk must do is identify which of the

available paths he will use based on the change he makes. LŦ ƛǘΩǎ ŀƴ ŜƳŜǊƎŜƴŎȅ ŎƘŀƴƎŜΣ ƛǘΩǎ ŜŀǎƛŜǊΣ because

he must ǳǎŜ ǘƘŜ ŜƳŜǊƎŜƴŎȅ ŎƘŀƴƎŜ ǇŀǘƘΦ LŦ ƛǘΩǎ ƴƻǘ ŀƴ ŜƳŜǊƎŜƴŎȅ ŎƘŀƴƎŜΣ ǘƘŜƴ ƘŜ Ƴight be assigned a path

based on the planned time for the release of the function, or he might have to look to see which

environment is not currently changing the same parts he will work on. Once he has the path he can check

out the fi le and begin to work.

If Dirk works in his own package, then he continues to add fi les to the package and build and test his change.

Once satisfied with the changes and ready to promote, he needs to run an audit check to see if anyone else

has changed anything related to his change, such as a copybook that has been included. If other changes

have already been promoted, he must then get those changes into his package, rebuild, and test before

moving forward.

If Dirk works in the development (dev) l ibrary level, then all other changes in that dev level are automatically

included in his change. When ready to move forward, he must check to make sure any changes he may

have picked up are also ready to move forward. If not, then he must manually remove the other change,

rebuild, and then retest to promote.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 8 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 1 Wor k flow ex ample, wor k ing with a libr ar y manager

As you can see from the scenario above, there are many manual tasks and reviews that must be performed

to work on the function. Many times, rework is required due to late decisions about what function will

move forward and what will not.

Have a look at the pros and cons of this approach:

F igur e 2 Pr os and cons of wor k ing with libr ar y manager s

Dirk identifies the programs
he plans to edit and the path

he will follow

He checks out the members
to the development stage or

his own package

Dirk starts modifying the
members.

Dirk needs to identify and
anticipate dependencies to

other members.

Based on the list of
dependencies, he checks if

there are any other changes
with a dependency to his

work in the staging hierarchy.

Dirk also checks if other
changes will move forward or
not. He may need to rebuild,

retest before promoting

mainframe development teams
are used to this approach

does not need much space

highly manual and repetetive
tasks to check for dependencies

serialization of work

when working with subsets of
the configuration,
dependencies to other activites
in the staging hierachy remain.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 9 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

WORKING IN FULL CONFIGURATION

Compared to the approach described above, modern SCMs use the concept of configurations. A definition

of a full configuration can be: ά! ŎƻƴŦƛƎǳǊŀǘƛƻƴ ƛǎ ƳŀŘŜ up of a given list of files, each of them at a given

version. A configuration can have various scopes: for example, an application component, an application, a

domain, ƻǊ ƳƻǊŜΦέ

F igur e 3 Wor k ing in configur ations

With a modern SCM the configuration can be checked out together, supporting full isolation. At the same

time, many other developers can also have their own version of the full configuration. This isolation allows

full parallel development on the same artifacts.

Imagine the following scenario:

¶ Alice works on a maintenance request of the current release (release 11), while at the same time

Bob implements new features in the same application component for the next release (release 12).

F igur e 4 Par allel r elease schedules

¶ Alice implements the fix in an isolated configuration, while Bob works on the same fi les for the next

release.

Release 11

Release 12

Maint. R11

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 10 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

¶ Bob is a member of team working on features for release 12. The team can work on these individual

features in isolation using feature branches.

F igur e 5 Wor k ing in isolated configur ations

¶ Once Alice completes her changes, she must merge those changes into the release 12 branch to

avoid a regression. This merge capability is supported by the modern SCM. Bob also needs to merge

those changes into his feature branch again using the built-in SCM functions.

F igur e 6 Mer g ing the differ ent configurations

Conclusion: Branching enables teams to separate and isolate different development requests like hot fixing,

maintaining the current release, or developing for a future release. It also provides greater flexibility to

select features for a certain release and moving features between releases.

FOUNDATIONAL CONCEPTS OF MODERN SCMS APPLIED TO GIT

Git is currently considered to be the de-facto standard SCM in distributed software development, serving

all necessary practices for the developer. Other modern SCMs continue to be used for specific use cases

such as security requirements or highly regulated environments.

Git implements the functionality to work in teams, to branch and fork configurations, and to merge changes

to the common codebase. Git is called a Software Configuration Management solution.

Release 11

Release 12

Maint.

Feature Branch

Feature Branch

Release 11

Release 12

Maint.

Feature Branch

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 11 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Unlike most other SCMs on the market, Git is a fully distributed SCM. The Git model is built on the

assumption that there is a full copy of the repository anywhere it is used, including the entire history. With

basic Git there is no concept of a master or a server; any copy could be considered the master. However,

with most Git implementations in large companies today, there is a centralized instance of Git that is

considered the server. This instance is used for audits and pipeline processing. Today there are many

different implementations of a Git server that expand on the basic Git capability to improve support for

automation and backup.

F igur e 7 S implif ied Git wor k flow

The picture above shows the distinct steps a Git user performs to edit code and share it with the team. The

dark blue rectangle represents a central Git repository serving two branches (master + stable).

Since Git is a distributed SCM, each developer works in his own Git repository. A central Git repository is

the single source of truth, which will be called origin.

¶ To edit a fi le, the user first clones the full repository to his workstation, including all defined

branches and its history.

¶ Then he points to the branch where he plans to work. He checks out this branch to his sandbox,

which is his environment for editing.

¶ He makes changes and then commits them to his local copy of the repository.

¶ To share the commit with the team and to the root repository, he needs to push the commit from

his copy to the shared repository.

¶ The developer can also create personal branches which will also be pushed to origin.

 Sandbox (Origin) Repository User forks or clones a full
copy of the repository

Master Branch

Stable Branch

Master Branch

Stable Branch

Master Branch
user

clones/
forks
repo

Check-
outs

branch

Commits Pushes

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 12 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Please refer to the official Git documentation at https://git -scm.com/doc

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772
https://git-scm.com/doc

© IBM Copyright, 2018 13 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

WORKING IN RELEASES

Branches help development teams to work on several software releases in parallel.

Mainframe development is done incrementally working a few parts at a time, which in some environments

allows deployment to production when required. Under the covers, change requests are handled in a

sequential manner if they affect the same code. When an emergency change or a higher priority change is

required, it can create a situation where the current work must be backed out so the priority work is

completed first. The lack of true parallel development l imits what can be done without doing lots of rework

to back out changes or manually bring changes together. This l imitation can at times cause a developer to

lose changes when emergency changes must be made.

These strategies do not provide a formal plan on how to work on a larger scale or how to handle conflicting

and depending change requests, creating a large demand for collaboration between individual developers

and development teams. This impact magnifies as more changes depend on each other and testing needs

to be coordinated. Timelines must be negotiated between the impacted development teams, which causes

inefficiencies in the development process. To reduce this need for coordination, development teams agree

with the line of business on a fixed release cycle.

For practices like Continuous Integration and Continuous Delivery, the fundamental goal is to have very

short release cycles.3 To achieve this goal, development teams invest in automation and the ability to isolate

and integrate quickly.

The SCM needs to support the methodology used for releases, meaning that several configurations can

exist at the same time. During a release, a team will reach multiple different milestones that should be

reproducible at any given time. For example, in Scrum the end of a sprint is a milestone.

Modern SCMs provide the function of identifying a set configuration for a milestone, many times called a

baseline. For Git, this functionality is called a tag.4 This function provides the ability to mark important

points in history within the configuration, such as a release candidate, the end of a sprint, a certain

configuration for a build, or the actual released software.

DIFFERENCES IN BUILDING AND DEPLOYING

Lƴ ǘƻŘŀȅΩǎ ƳŀƛƴŦǊŀƳŜ ŘŜǾŜƭƻǇƳŜƴǘ process, building an application focusses on the compilation and linkage

of the modified source fi les. Compiling and l inking on a fi le basis or on a small-defined list of fi les is the

common approach.

3 Article on Continuous Integration for Rapid development
https://martinfowler.com/articles/continuousIntegration.html

4 https://git -scm.com/book/en/v2/Git-Basics-Tagging

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772
https://martinfowler.com/articles/continuousIntegration.html

© IBM Copyright, 2018 14 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

In distributed systems the build is managed by a build management system. For example, in C/C++, make

manages the build. In Java development, Gradle, Maven or Ant usually drive the build with scripts defining

the order of generating the binary fi les. The build management system uses automation to identify what

was changed as well as the relevant dependencies. Very often, this leads to compiling all parts to generate

the new complete application. In each of these cases, there is a build administrator defining the build

process.

In traditional mainframe development, there is a hierarchy mapping to the testing environments.

Developers promote their changes to move to the next stage of testing. This leads to a complete

serialization of development activities.

F igur e 8 Mainfr ame staging hier archy

One of the key differences between traditional mainframe builds and distributed builds is working in a

shared environment and having a static path for promotion versus the ability to work in an isolated

environment and not requiring a static promotion path.

Distributed development teams work and test on isolated branches of the SCM and the test environment

(see Figure 9 Isolated development branches), l ike branches of a tree.

Production

Acceptance

Test

Development

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 15 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 9 I solated development br anches

Master

Release

Integration

Feature 1 Feature 2 Feature 3

Maintenance

Fix 1

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 16 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Mainframe development and scopes
An IT system is developed by many teams and composed of different applications driven by the l ine of

businesses and consumers. Applications need to interact to provide the overall system and interact through

defined interfaces. Using well-defined interfaces allows the parts of the application to be worked on

independently without necessarily requiring a change in other parts of the system. This application

separation is visible and clear in a modern SCM, allowing clear identification of each of the distributed

applications. However, in most l ibrary managers, the applications all share a set of common libraries, so it

is much more difficult to create the isolation.

In this section, we discuss ways of componentizing mainframe applications so they can be separated and

the boundaries made more easily visible.

LAYOUT OF DEPENDENCIES OF A MAINFRAME APPLICATION

From a runtime perspective in z/OS, programs run either independently (batch programs) or online in a

middleware (CICS, IMS) runtime environment. Programs can use messaging resources like MQ queues or

data persistence in the form of database tables, or fi les. Programs can also call other programs. In z/OS

called programs can either be statically bound or use dynamic linking. If a COBOL program is the first

program in a run unit, that COBOL program is the main program. Otherwise, the COBOL program and all

other COBOL programs in the run unit are subprograms. 5 The runtime environment involves various layers,

including dependencies expressed between programs and resources or programs and subprograms.

There are multiple types of relationships to consider. The source fi les in the SCM produce the binaries that

run on z/OS. To create the binaries, a set of source level dependencies must be understood. There is also

a set of dependencies used during run time. These multiple levels of dependencies are defined in different

ways, and in some cases not clearly defined at all. Understanding and finding the dependencies in source

fi les is the first challenge.

Building a program involves different steps:

1. Compilation including any pre-compilation steps, defined as explicit steps or as option of the

compiler, creates a non-executable binary (object deck) fi le.

2. Link-edit which assembles the object deck of the program with other objects and runtime libraries

as appropriate. Link-edit can be driven by instructions (a link card) from the SCM or as dynamically

defined in the build process.

5 See COBOL Programming Guide https://www-01.ibm.com/support/docview.wss?uid=swg27036733 ς Chapter
Using subprograms

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772
https://www-01.ibm.com/support/docview.wss?uid=swg27036733

© IBM Copyright, 2018 17 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 10 Pr oducing obj ect code and ex ecutables

As part of the current build process some additional steps, such as binds to databases, are sometimes

included. The function of these steps is to prepare the runtime for a given execution environment. These

should not be included in the build process itself, but should instead be included in the deployment process.

Source dependencies during the build differ from runtime dependencies

Most of the time when people think about an applicationΣ ƛǘΩǎ ŦǊƻƳ a runtime point of view. Several

components are required for an application to run. Some of these are required as dependencies such as

the database or middleware and its configuration, others are required as related such as other applications

that might be called.

Everything running in a runtime environment starts as source from an SCM. Or at least it all should when

you consider infrastructure as code. Some source fi les represent definitions or are scripts that are not

required to be built. Those that do require being built generally require other source fi les such as

ŎƻǇȅōƻƻƪǎΣ ōǳǘ ŘƻƴΩǘ ǊŜǉǳƛǊŜ ǘƘŜ /L/{ ŘŜŦƛƴƛǘƛƻƴ, for example. Some of the source fi les are also included in

many different programs, for example, a copybook can be used by many programs to represent the shared

data structure. It is important to understand the relationships and dependencies between the source fi les,

and when those relationships or dependencies have importance. The copybook is required to build the

program, so it is required at compile time, but it is not used during run time. The configuration for a

program such as the CICS transaction definition or the database schema is related to the application, but is

required only for the runtime environment.

A concrete dependency is the interface description when calling a program. A copybook defines the data

structure to pass parameters to a program. So, the copybook is important to be shared while the program

is part of the implementation.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 18 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Programs call each other either dynamically or statically

On z/OS there are two ways programs are generally called: dynamically and statically. Statically called

programs are linked together at build time. These dependencies must be tracked as part of the build

process to ensure they are correctly assembled. For dynamic calls, the two programs are totally separate.

The programs are built and link-edited separately. At run time the subprogram is called based on the library

concatenation.

Many organizations have been moving to increased usage of dynamic calls as that approach reduces the

complexity at build time. However, this approach means that the runtime dependencies need to be tracked

and understood if any changes are made that require updates in both program and subprogram.

These programs and subprograms are inter-dependent even when using dynamic calls. When a program

calls another program, generally they share data. A transfer of control occurs between the program and the

subprogram with the main program passing a set of data to the subprogram and generally expecting some

data in response.

Different mechanisms exist to share pieces of data based on the language or the runtime. However, there

is a need for the caller and the called program to define the data structure to be shared.

The call of a subprogram is based on a list of transfer parameters, represented in the interface description

like an API, but it is more tightly ŎƻǳǇƭŜŘ ǘƘŀƴ ǘƻŘŀȅΩǎ w9{¢-based APIs.

You commonly define your shared data structure in an included source fi le, for example COBOL uses

copybooks.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 19 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 11 Tr ansfer of contr ol shar ing data

It is very common to define multiple copybooks for your programs to isolate data structures and reuse them

in other areas of your application component. Using copybooks allows more modularity at source level and

facil itates dealing with private and shared data structures, or even private or shared functions.

APPLICATIONS AND PROGRAMS

In a web application, it is relatively easy to define an application because the physical artifact that is

deployed is the complete representation of such an application: the EAR or WAR fi le. In the Windows world,

it is more complicated since an application can be made of several executables and DLLs, but these are

generally packaged together in an installable application or defined by a package manager.

An application is generally defined by the function or functions it provides. Sometimes there is a strong

mapping between the physical parts that are shipped and sometimes it is a set of parts that run the

application.

In the mainframe, we fall closer to the second case where applications are defined by functions. However,

based on the way the applications have grown over the years, there may be no clear boundary as to where

one application ends and another one begins. An application can be defined physically by a set of resources

(load modules, DBRMs, definitions) that belong together as they contribute to the same purpose: the

calculation of health insurance policies, customer account management, etc.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 20 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

At the source fi le level, the relevant fi les contributing to an application are derived from the runtime of an

application. These fi les can usually be identified by different means: a set of naming conventions, the

ownership, information stored in the SCM, etc. It may not seem obvious at first glance, but most of the time

it is possible to define which source fi les contribute to a given application.

Scoping your source fi les to an application has many benefits. It formalizes the boundaries of the

application, and therefore its interfaces; it allows to define clear ownership; and it helps with the inventory

of the portfolio of an organization. Planning of future features to implement should be more accurate based

on this scoping.

APPLICATIONS AND APPLICATION GROUPS

Within an organization, multiple applications generally make up the business function. An insurance

company may have applications dedicated to health insurance, car insurance, personal health, or group

health policies. These applications may be managed by different teams, but they must interact. Teams must

define the interfaces or contracts between the applications. Today many of these interactions are tightly

coupled with only a shared interface defining the relationship.

!ǎ ǿŜΩǾŜ ǎŜŜƴ ǎƻ ŦŀǊΣ for traditional z/OS applications the interface is not separate but defined in source via

a shared interface definition, generally a copybook or include. This source must be included in each program

build for them to be able to interact. With this information, an application can be defined by two main

components: shared interfaces that are used to communicate with other programs and the actual

implementation of the programs.

It is important to note that shared copybooks could be shared not only within an application but across

programs, or across applications. The only way other programs or applications can interact with the

program is by including the shared interface definition. A z/OS load module does not work like a jar file,

because it is does not expose interface definitions.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 21 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 12 An application ex poses a public inter face

As applications communicate, their implementation consumes the public interface of the applications with

which they interact. This concept of a public interface is common in Java programs and the way the

communication between applications is defined. This principle can also be applied to existing COBOL and

PL/I programs to help explain the structure required for a modern SCM.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 22 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 13 Applications consume public inter faces of other applications

CROSS-CUTTING INTERFACES

There are additional capabilities that might need to be shared in addition to sets of data structures for

application communication. These capabilities might include standard security or logging functions and can

be considered cross-cutting interfaces. These capabilities may be developed once and then included in

many different programs. It would be very helpful if these additional included capabilities could also be

handled as shared components with their own application lifecycle. The challenge comes when these

components change in a non-compatible way. These types of changes are generally infrequent but might

be needed at times.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 23 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 14 Inter faces used by applications

In the preceding sections, we have laid out some of the key factors when considering the source code of

traditional mainframe applications. The environment generally consists of many different applications that

can provide shared interfaces and could consume shared components, or cross-cutting interfaces.

The knowledge of these factors and their respective lifecycles can guide the desired structure of source files

in the SCM. Several patterns are possible to provide appropriate isolation, but to also provide appropriate

sharing based on different requirements.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 24 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

SCM scenarios
DEVELOP AT APPLICATION SCOPE, THEN INTEGRATE AND ADOPT NEW

INTERFACES

First we consider the applications that provide interfaces and rely on other applications interfaces. Each

application has its own lifecycle of changes. In this process changes are made, the changes are stabilized,

and then go to production. In the end, there is a single production execution environment where all the

applications will run. The applications must integrate but the most common breaking point is their

interfaces. If an ŀǇǇƭƛŎŀǘƛƻƴΩǎ interface changes in a non-backward compatible manner and the other

applications do not react to this change (to at least recompile the modules affected by the interface

change), then the production application will break. Therefore, most changes are implemented in such a

way so that the structure of the data that is shared is not changed, but fi l ler fields are used, or data is added

to the end where only applications who need to react to the change are required to respond.

There are several types of changes that can be made to an interface. The major types are:

- A backward compatible change. The interface changes, but the change is done such that all

applications do not need to react. The process of reacting to changes is called adoption. The

applications consuming the interface are referred to as consumers. A typical example is when a

field is added to a data structure, but this field does not have to be handled by most applications

except a selected few, which requested this new field.

Usually, fi l lers are used in a data structure and when people declare a new field, the overall

structure of the data structure stays the same. Only the consumers interested in the new field need

to adopt by using the new element in the interface. The others should use the new interface to stay

ŎǳǊǊŜƴǘ ōǳǘ ŘƻƴΩǘ ƴŜŜŘ ǘƻ adopt it at this point. A standard practice is to adopt the change at least

for those programs which are changing and recompiling for other reasons. Many organizations

ŘƻƴΩǘ Řƻ ǘƘƛǎ ǘȅǇŜ ƻŦ ŀŘƻǇǘƛƻƴ ǳƴǘƛƭ ǘƘŜ ŎƘŀƴƎŜ Ƙŀǎ ƳŀŘŜ ƛǘ ǘƻ ǇǊƻŘǳŎǘƛƻƴΣ ǘƻ ōŜ ǎǳǊŜ ǘƘŜȅ ǿƻƴΩǘ ōŜ

dependent on a change that gets pulled from the release late in the cycle.

- A breaking change. A data structure has changed in such a way that the overall memory layout of

the data is impacted. It could be because of an array in a data structure. There are other cases as

well (such as changes in arrays or condition name changes also known as level 88). In these cases,

all of the consumers need to rebuild, whether they have functional changes to their code or not.

Especially with breaking changes, a process needs to be defined for planning and delivering application

ƛƴǘŜǊŦŀŎŜΩǎ ŎƘŀƴƎŜǎΦ As previously described, this process is called the adoption process.

Today, the adoption process is often handled by an audit report generally run late in the cycle. However,

having early notification and understanding of these changes helps improve and speed delivery of business

function.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 25 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

[ŜǘΩǎ consider an example: the IT system of an organization is made up of several groups of applications.

One of these groups of applications deals with customer information and registration while another one

deals with accounts and inventory.

The application groups are managed by different departments within the company. Usually an application

owner exists for each application or application group. This example also applies to companies who do not

perform the development themselves and have outsourced the development to one or several IT

companies. The coƳǇŀƴȅΩǎ ǎǘŀŦŦ then receives, validates, and deploys the new versions.

For the next major release, there are several new features that need to be implemented in various parts of

the IT system. At least two applications will be involved, each working on different features, but depending

on each other.

[ŜǘΩǎ ƛƳŀƎƛƴŜ two application owners manage the set of applications in the figure below. Each application

team has access to the source fi les (and repository) of a selected number of applications as well as any

interface definitions they need.

F igur e 15 Application teams develop new featur es by mak ing changes to some of the applications of the IT system

The applications are not independent of each other. In fact, both Application 16 and Application 21

consume the interfaces of Application 1. Also, Application 32 consumes the interface of Application 2.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 26 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 16 Applications 2 and 16 consume inter faces of Application 1

The shared interfaces of Application 1 and Application 2 need to evolve to fulfi l l the business requirement.

In this scenario we assume the modified interfaces are backward compatible. However, Application 16

would improve if it takes advantage of the new fields exposed by Application 1. Application 32 would also

improve by using the updated interfaces of Application 2.

All changes are expected to be deployed to production at the same. For this example, we assume team

Green is ready on time for shipping the change, but team Orange is not.

If team Green has adopted the latest version of the interface of application 1 in application 16 and team

Orange cannot deliver its changes of application 1, there is a problem. The enhanced application 16 will

need to be changed to fit with the old interface of application 1. This causes a delay and additional

development efforts for team Green even though they were originally complete on time.

Such a situation is unfortunately common. To avoid such situations, development teams use the following

process:

Application 21 consumes the new interface of application 1, because both are part of the delivery of team

Orange. However, Application 16 does not use the new interface and postpones its adoption. It continues

to use the previous one, which is currently running in production.

Application 32 only takes advantage of the new interface of application 2, as both applications are in the

area of responsibility of team Green.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 27 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 17 Applications 2 and 16 consume inter faces of Application 1

What we have described here is a multi-layered adoption process. This is a simplified example. It gets more

complex when Application 1 interface changes are not backward compatible. In such a case, the adoption

done by the multiple parties needs to be managed and coordinated (Application 1, 21, and 16 need to be

deployed together), because only a single version of Application 1 will run in production.

ADOPTION PROCESS

Changes to public interfaces should be coordinated between the different applications. Various levels of

coordination can be defined:

No process (aka immediate adoption)

As the change is made, everyone else is impacted immediately. This is the unfortunate reality of many

organizations today. Developers can be hit by unexpected changes that break their code. To minimize the

risk, developers start to develop and test in isolation before sharing the updated interfaces. With Git and

DBB, they can develop in isolation, build within their isolation, and fully test before they integrate with the

rest of the team.

Such a simple scheme is conceivable for interface changes in Application 2 of our example. But not across

application teams like the changes in Application 1. Usually this scheme does not scale (for example it works

for small teams, small set of applications only) and slows down development teams as they grow. It can be

applied for application internal interfaces without impacts to other applications.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 28 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Everyone adopts at a planned date

Very similar to the first adoption pattern is the adoption at a planned date. A change to the interface is

announced via a meeting, an email, or a planning tool. Probably an outline of the future version is made

available with the announcement.

Everyone adopts at their own pace

The providing team publishes the new interface change. The teams using the interface can determine

themselves the point of accepting the change to their application.

Whatever adoption method is selected, we need to ensure there is only one production runtime

environment. On source code level, applications need to consolidate and reconcile development activities

to ensure changes are not picked up accidentally before being ready to move forward. The most common

method is to consolidate in the integration environment.

SCM LAYOUT SCENARIOS

Base scenario

We start with how an application repository can be organized before exploring a concrete scenario of how

a shared interface is published to consuming applications.

For a better overview, we will first introduce the concepts used throughout the following pictures to explain

the different scenarios.

F igur e 18 Legend of used shapes

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 29 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

The branch, being represented by a simple line, is highlighted if involved in a scenario.

The color coding of the Git repositories will be grey if it belongs to a dedicated team or blue when used for

a commonly shared repository.

F igur e 19 Color coding

WŜ ŘƻƴΩǘ ŜȄǇƭƛŎƛǘƭȅ ŘƛǎǘƛƴƎǳƛǎƘ ōŜǘǿŜŜƴ ǇŜǊǎƻƴŀƭ ƻǊ ŎŜƴǘǊŀƭ Git repositories for the color coding.

Branch strategy

Within the Git repository, the different configurations of the application source fi les are represented by

branches. Remember when we described a configuration of source fi les that it includes all the source fi les

at a given version of an application.

Git being a distributed SCM, each developer works in their own Git repository. These repositories can be

synchronized between each other. A central Git repository is the central point of truth in an organization of

repositories. This is the one that is the door to the delivery pipeline, it is generally backed up, and used for

audit purposes. We will begin with the branch strategies of this central Git repository.

The simplest organization would be to have a single branch.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 30 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 20 Intr oducing the Master br anch

Tags can be set on any branch to indicate the status of that branch such as a stable version, a version

currently in production, or the last version in production.

In this example the work proceeds sequentially. This simple configuration is used when there is a small team

maintaining an application with a single always active state. (Developers work in their own branches, which

are pushed to this central Git repository, and a pull request is issued to merge the capabilities in for

deployment. These developer branches are deleted as soon as the pull request is completed, which is why

this generally has one stable Master branch.)

A second branch is often introduced to allow the development activity to be isolated from the branch which

represents the current production environment, i.e. Master.

F igur e 21 Intr oducing the r elease br anch

Over time, when the release branch is stable and its content validated, a merge is done to the Master

branch. This process allows to slow down deliveries toward a release captured in the Master branch. When

using Git for mainframe development, we recommend the Master reflects at any given time the contents

declared for production.

For larger teams who are not continuously deploying to production, a more typical scenario involves three

branches:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 31 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 22 Intr oducing the integr ation br anch

Through the Integration branch developers integrate and exchange their code. Unit test and early stage

testing is performed from that branch content. The code is then merged into the release branch to prepare

the release, perform more later stage tests (late state integration testing, final performance, and scalability

testing for example). A tag on release is used to identify a release candidate.

The higher you are in the branch hierarchy, branches are expected to be more stable and changing less

frequently.

F igur e 23 U pdate cycles of br anches

In this schema you provide a level of isolation for development until a release is declared. However,

development is sti ll sequential: You cannot work on the next release in integration when the current one

has been declared. Sometimes you want a part of your development organization to start work on the next

release earlier, because stabilization does not require the whole team. In this case, an additional integration

branch can be introduced to let development start earlier.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 32 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 24 Tempor ar y integration br anch to star t new development ear lier

Some teams are set up so development is divided into maintenance and feature teams. Developing several

features of the same application can be challenging within a single configuration, as each requirement can

change the same parts for different purposes.

Through isolation, an individual developer can work more effectively and changes gain a level of stability

before sharing them with the team. Git introduces the concept of short-l ived topic branches6. A topic branch

is intended to provide isolation for the developer for working on a hotfix, a new feature, or a maintenance

task.

Consolidation of the different topic branches happens most commonly on the integration branch, for

example through a merge workflow like the GitHub pull request.

F igur e 25 Topic br anches

6 https://git -scm.com/book/en/v2/Git-Branching-Branching-Workflows

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 33 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Additionally, development teams might need to demand several development branches to separate

integration scenarios of different features under development. In this case a new branch level is introduced

called development, which merges into the integration branch.

F igur e 26 Additional development br anches

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 34 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Team strategy

Git being a fully distributed source control management system and the requirements from financial

authorities for auditability can sound contradictory. But there are many financial organizations that are

successfully accomplishing the audit and security requirements with Git. The specific requirements need to

be considered in your design of the infrastructure setup and SCM layout. Different implementations of Git

are provided as cloud solutions like GitHub, GitLab or Bitbucket, or many can be run on premise as well.

Depending on the selected implementation the team strategy can look different, but in all scenarios there

will be a central Git ǎŜǊǾŜǊ ƪƴƻǿƴ ŀǎ ƻǊƛƎƛƴ ŀƴŘ ǇŜǊǎƻƴŀƭ ǊŜǇƻǎƛǘƻǊƛŜǎ ƭƛƪŜ ǘƘŜ ƻƴŜǎ ƻƴ ǘƘŜ ŘŜǾŜƭƻǇŜǊΩǎ

workstation.

Working in topic branches provides great isolation and flexibility to development teams, but also raises the

need for integration and exchanging changes with the team, which is known as the merge process in Git.

Git servers provide additional workflow support known under the term merge or pull request.

Master, release, integration, and development branches are shared branches, remaining active for a longer

period. Topic branches have a short l ifecycle. Developers create topic branches for each new work item

and delete them after integrating the changes with the team.

To leverage the workflow capabilities provided by Git servers, personal branches are also stored on the

central Git server.

[ŜǘΩǎ ƛƳŀƎƛƴŜ .ƻō ǊŜŎŜƛǾƛƴƎ ŀ ƴŜǿ ǘŀsk. He first initializes a new topic branch within his local repository

based on the configuration as well as the origin repository.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 35 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 27 Develop locally and integr ate on the centr a l ser ver

Bob can also backup his work on the central server in origin. When he is done with development and would

like to integrate with his teammates, he initiates the pull request workflow process. Given that his topic

branch is stored on the server, a teammate can easily review and approve his changes before merging them

to the development branch. When integration is done, the topic branch is deleted. This avoids the

continuous need to synchronize personal branches in personal and central repositories.

A second, highly unusual and not recommended approach - unless the branch is going to live for less than

a day - is to keep topic branches just within the personal repository. A scenario could be a prototyping

scenario, which should not be shared with the team yet.

For this scenario, Bob does not push his feature branch to the shared Git repository, he merges to the

development branch in his personal Git repository and synchronizes the development branch with

development in origin.

F igur e 28 U se local Git r epositor y for featur e development

Moving towards the Master branch within the branch hierarchy, the merge workflow can require merging

the branches totally or just selectively.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 36 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 29 Mer ge commits fr om development to integr ation thr ough pull r equests

In case of merge conflicts, Bob needs to resolve them in his personal repository and then push them back

to origin.

Content of branches

The content in the all branches can look identical and is generally split into a folder structure separating the

application source fi les in different folders, for example, for an application called App 1:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 37 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 30 F older str uctur e in Git for an App1

The above simplified structure is not the only possible organization of a branch. The key is to separate out

the fi les into folders which hold related fi les and to provide an organization that makes sense to the

development team. This simplified structure is showing a high-level split to be able to identify a shared

interface separate from the internal implementations.

There are multiple possible strategies for identifying shared resources, but it is important to come up with

a way these are identified such that the developer has an easy understanding of the impact of his change.

Clearly identifying the different fi le types will also be helpful when defining the build. Within the DBB sample

provided at GitHub, you will find an example using fi le.properties which uses the fi le extension to map the

fi les in the repository to the correct build scripts. At this point we will not discuss the actual build scripts in

greater detail but will discuss that later.

Finally, we end up having several Git repositories, one per application. Our scenario is based on three

branches: Master, Integration and Dev.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 38 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 31 One Git r epositor y per application

The proposed Git repository structure with a repository per application also addresses authorization

concerns: that everyone has full access to the full codebase of an enterprise. Permissions are granted on

repository level of the Git server.

However, applications depend on each other. Interfaces of applications are consumed by other applications

and several versions of interfaces can be involved in the development l ifecycle.

The next section describes several options to manage the workflow of public interfaces of applications.

Choosing the right option for your application depends on many factors. We will outline the different

strategies of how to manage the adoption process of a shared interface with regards to the already outlined

adoption strategies. A breaking or disruptive change of the interfaces needs to be handled differently than

a compatible change. In general, people avoid disruptive changes to the interfaces because it means also a

potential rework for the consuming applications. However, support needs to be in place for these scenarios.

Option 1 describes one possible workflow of how a breaking change of a shared interface can be managed.

We will consider the perspectives of the interface provider as well as the consumer. Option 2 outlines a

simple workflow for interface changes which make sense if backward compatibility can be guaranteed.

INTEGRATION SCENARIOS OF SHARED INTERFACES

Option 1 ς Manage the adoption process of a breaking change through a

dedicated repository for shared interfaces

Scenario outline

[ŜǘΩǎ ŎƻƴǎƛŘŜǊ ŀ ǎŎŜƴŀǊƛƻ ǿƛǘƘ ƳǳƭǘƛǇƭŜ ŀǇǇƭƛŎŀǘƛƻƴǎ ǘƘŀǘ are interconnected: they expose and consume

interfaces from each other.

There is one Git repository per application. Each repository contains three branches: Master, Integration,

and Development. Additional topic branches may exist but are not represented in the next schemas.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 39 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

For the sake of simplicity, we have not introduced a release branch between Master and Integration. A

release branch makes sense in several scenarios, but it also adds complexity to the process. We will have a

specific discussion about adding a release branch and how to deal with it.

We introduce a dedicated Git repository to manage the published interfaces of the applications. Each

application will publish in this repository its public interfaces. The repository will give access to published

interfaces for the consuming applications.

The interfaces themselves are developed within the repository of the application by the owning application

team. Keep in mind that in z/OS software development, interface specifications are exposed through

Copybooks or Includes fi les and are required to build your application programs.

F igur e 32 A Git r epositor y dedicated to published inter faces

A single Git repository on the Git server is dedicated to all shared interfaces. The repository contains a copy

of the Copybooks and Includes, but no implementation logic. The organization of the branch content is

significant here: we manage the official version of the interfaces in one branch, and new versions to be

adopted in another one. Each branch contains all the published interfaces of each of the applications, each

in a dedicated folder.

The folder structure in a branch could look like this:

F igur e 33 Layout of the contents of the published inter face r epositor y

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 40 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Regarding the number of branches in the published interface repository, you might have noticed that it

does not necessarily match the number in the application repositories. The Master branch contains the

official versions of the interfaces. Integration is used as an intermediate branch, providing the ability for the

teams to adopt the change of the interfaces within their application.

How does an application publish changes of the interface to the Published Interface repository?

Publish from integration
In our scenario, the integration branch is the one where the next release of the application becomes stable.

The final build of a given program may happen at that stage. The team creates the packages to be tested

and deployed in runtime environments from these binaries.

Given that the integration branch receives commits from development branches, the source code evolves

quickly. But there are phases when new versions of the interfaces become mature and ready to be

published. This could be, for example, in the last days of an iteration.

When the team considers the new public interfaces are ready to be exposed to other applications, then it

triggers a specific Jenkins build. The purpose of this build is to extract the public interfaces of the Application

and commit these fi les to the Published Interfaces repository in its Integration branch. The build identifies

the fi les to process (the public interfaces) based on the setup of the branch content.

This publication build can be an option of larger Integration build. Triggering it may even be automated (for

example, when the application has been validated in QA), but it may not be appropriate that every

integration build publishes the interfaces.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 41 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 34 U pdate integration br anch in published inter faces r epositor y

Publish from Master
When the release is declared or will be deployed to production, the Master branch within the application

repository will be updated with the commits of integration. It is now time to publish the public interfaces

as the new official version.

An automatic build can be triggered when commits arrive in the Master branch of the application

repository. Similarly, it will extract the source fi les (public interfaces) of the Master branch, and commit

these fi les, but this time to the Master branch of the Published Interface repository.

There is now a question about the content of the integration branch of the Published Interface repository.

In the following picture, we propose to update both the Master branch and the integration branch with the

public interfaces of Application 1. In more advanced cases (for example, parallel development, commit of a

subset of integration), a more complex management of the integration branch is needed. ²Ŝ ǿƻƴΩǘ ŘƛǎŎǳǎǎ

i t here.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 42 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 35 U pdate master br anch in common thr ough mer g ing

How to consume other applicationsΩ interfaces

So back to our scenario: ǘƘŜǊŜΩǎ ŀ ƴŜŜŘ ŦƻǊ ŜŀŎƘ ŀǇǇƭƛŎŀǘƛƻƴ ǘƻ ŎƻƴǎǳƳŜ ǘƘŜ published interfaces provided

by other applications or cross-cutting components.

We have seen there are various ways to deal with adoption or consider changes from other applicationsΩ

interfaces that my application is consuming. One adoption strategy is to adopt at my own pace. It means

the team decides to obtain updates of interfaces at a given time and remain with this version for a given

period, for example, an iteration. The team therefore works in isolation during that time.

To achieve isolation, the team needs to stay stable with a given configuration of the published interfaces.

This can happen either through the use of a Git submodule within its own configuration or by using a clone

of the Published Interfaces repository: the team controls how often the submodules or clone get synched

with the origin. Please keep in mind at one point within the lifecycle the application team will need to

integrate and build with the officially published interfaces.

Managing its own version of the published interfaces should only be used for the development and

application internal integration phases. This provides full independency from other development activities.

[ŜǘΩǎ ƴƻǿ consider the usage of the consumed interfaces through the build: we have seen there are two

published versions of the interfaces in two different branches; ƭŜǘΩǎ ŘƛǎŎǳǎǎ ǿƘƛŎƘ ƻƴŜ ǎƘƻǳƭŘ ōŜ ǳǎŜŘΣ ŀƴŘ

whenΦ .ǳǘ ōŜŦƻǊŜ ŘƻƛƴƎ ǘƘŀǘΣ ƭŜǘΩǎ ŎƭŀǊƛŦȅ the builds in our system.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 43 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Overview of the builds
There is one pipeline build per branch for each application repository, except the Master branch, which

reflects the contents of the production environment.

F igur e 36 Builds r elated to br anches

CƻǊ ǘƘŜ ǎŀƪŜ ƻŦ ǎƛƳǇƭƛŎƛǘȅΣ ǿŜΩǊŜ ƴƻǘ ŎƻƴǎƛŘŜǊƛƴƎ ¢ƻǇƛŎ ōǊŀƴŎƘŜǎ ƘŜǊŜΦ

[ŜǘΩǎ ǎŜŜ Ƙƻǿ ŜŀŎƘ ōǳƛƭŘ ōŜƘŀǾŜǎ ǿƛǘƘ ǘƘŜ public interfaces it consumes. There are a set of choices and

scenarios, primarily depending on the phase you are in with your development.

At one point in development you are going to produce the official production binaries. Most of the changes

will be independent of other applications, but as described in the intro of this section, there are

requirements with dependencies across application boundaries.

We also have seen that in development phases, isolation might be needed. To provide the highest level of

isolation, the application team manages its own version of the published interfaces. In the next phases, it

will also need to integrate and rebuild using the official version of the published interfaces, when it proceeds

towards production to produce the official production binaries.

The following schema gives an overview of the possibilities we are considering for each build:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 44 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 37 Builds r elating to off icia l or clone r epositor y containing the published inter faces

Two versions of the published interfaces are available: the version from Master and the version from

Integration. There is a mechanism for full isolation available in development.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 45 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Development build
Several scenarios are possible for the development build, based on the requirements of the application and

the phase in the development cycle.

Within the early development phase, the team may use the published interfaces of the integration branch

within the development pipeline build, either from the official repository, or from their clone if they pursue

full isolation.

F igur e 38 Development build consumes inter faces fr om integration br anch

In later phases, or if the application does not require early versions of new interfaces, the team may use

the official production version of the published interfaces of the Master branch. Using a clone that you

synch explicitly with the Published Interfaces repository is sti ll a possibility, but it is not a requirement

anymore as the Master is meant to be more stable in time.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 46 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 39 Development build consumes published inter faces fr om Master br anch

Integration build
[ŜǘΩǎ ƴƻǿ ŎƻƴǎƛŘŜǊ ǘƘŜ ƛƴǘŜƎǊŀǘƛƻƴ build. In our scenario, the integration build is where the final build of the

binaries happens. It is therefore important that the version of the public Interfaces that is used is compatible

between consumer and producer. The integration build either consumes the version of the interfaces from

Master or from integration. The latter case might be caused by the adoption of a breaking change that

needs to be managed: several applications need to go to production together.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 47 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

F igur e 40 Integration build consumes published inter faces fr om Master or I ntegration br anch

¸ƻǳΩƭƭ ƴƻǘƛŎŜ ǘƘŀǘ ǘƘŜ LƴǘŜǊŦŀŎŜǎ ǇǊƻǾƛŘŜŘ ōȅ ǘƘŜ !ǇǇƭƛŎŀǘƛƻƴ м LƴǘŜƎǊŀǘƛƻƴ ōǊŀƴŎƘ ŀǊŜ ƎǊŀȅŜŘ ƛƴ ƻǳǊ ǇƛŎǘǳǊŜΦ

We want to highlight the build uses two different sets of fi les for the interfaces of Application 1. The ones

from Application 1 repository and the ones from the Published Interfaces repository.

When there are no breaking changes to the interfaces, it is safer to build with the published version of the

interfaces. It ensures provider and consumer are in synch. When there are breaking changes that will be

published to Master when the release is declared, the build needs to use the version from the Application

repository. Other consumers need to adopt the new interfaces.

More advanced case: Release Build
So far, for the sake of simplicity, we have not introduced a Release branch. But having such a branch is

typical in GitΦ [ŜǘΩǎ ŘƛǎŎǳǎǎ ƛǘǎ ǇǳǊǇƻǎŜ ŀƴŘ ǘƘŜ ƛƳǇƭƛŎŀǘƛƻƴǎ ƛƴ ǘŜǊƳ ƻŦ ōǳƛƭŘΦ

Our workflow so far is focused on creating as early as possible binaries that are candidates to be deployed.

.ƛƴŀǊƛŜǎ ŦǊƻƳ ŘŜǾŜƭƻǇƳŜƴǘ ōǊŀƴŎƘ ŀǊŜ ƴƻǘ ŎŀƴŘƛŘŀǘŜǎ ǘƻ ōŜ ŘŜǇƭƻȅŜŘΦ LǘΩǎ ƴƻǘ ƎǳŀǊŀƴǘŜŜŘ ǘƘŀǘ ǘƘŜȅ ǳǎŜ ǘƘŜ

correct version of the interfaces, they have not been validated, and at best unit tested. The build options in

development offer maximal debug capabilities.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 48 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

The integration build however can be setup to produce such binaries. The build options are optimized, and

the binaries have passed initial tests in development phases. A package can be created to be deployed in

different environments. If the package meets the criteria, it could be declared as being ready for production.

Some organizations may introduce a Release branch to dissociate the work of integration, sti l l considered

as an extension of development, from the work of creating candidates for production. People would

typically do that when the development work has been isolated for a long period of time: one or several

new features may have required several iterations to be ready for integration. In this case, the integration

involves more work. Maybe unit testing has to be performed again.

LǘΩǎ ǘhe release branch that will therefore contain valid and stable content. The release branch would be the

one to publish new interfaces. It would be automatic.

F igur e 41 Release br anch publishes inter faces to I ntegration

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 2018 49 / 69 Version 1.0.1, Oct 15th, 2018

Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

If a release branch is introduced, then the release build is the one that uses the interfaces from Master. The

integration build either uses the interfaces from Master or from Integration. Development targets either

the interfaces from Master or Integration.

F igur e 42 Inter faces consumed for each build

Option 2 ς Manage the adoption process through publishing shared interfaces to

the file system

Scenario outline

In this scenario, interfaces are sti ll published and consumed as we described in the previous scenario. But

instead of using a Git repository to store and version the published interfaces, we use the fi le system, either

on USS (with a dedicated set of folders) or MVS (with a dedicated set of PDSEs). The principles of publication

and consumption remain the same.

Publishing interfaces just to the fi le system has many disadvantages, specifically when it comes to

traceability and auditability. You can no longer prove which version of an interface you used in a specific

build. This option is most commonly used for interfaces totally out of your control and are updated

infrequently, such as system includes. The final build of your programs must be auditable.

The most common use for this is in a migration scenario. The fi le system is used in the transitioning phase

to Git to enable building applications which reside either in the old SCM or Git. The fi les stil l managed by

the old system are used in Git via the fi le system until everything is moved over.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

