DEVELOP MAINFRAMB-BWARE WITH OPENSOBSOURCE
CODE MANAGERND IBM DEPENDEN®@&SBD BUILD

<|||i

®

International Business Machines

Dennis Behm
Nicolas Dangeville

RosalindRadcliffe

October B, 2018

Version 1.01

CONTENTS

Develop Mainframe Software with OpenSource Source code nesagd |IBM Dependency Based Blild

[T pN (oo 11 Tex (1 o] o AU PPN 5.
What dOES SCM STANA TOL2.......oiuiiiiiii ittt eee et sb et st b e s aenme e s aeesbeesbeeaeesbeeneesnnaas 6
Mainframe Development practices and key concepts of modern SCMs and develapment........... 7.
Traditional Mainframe Library Managers VS. SCM Configurations............ccoeeveeveenenieneenennens 7.
Working in fullCONfIQUIATON. ..ottt sttt e enan et e e neeseeeeesneens 9.
Foundational concepts of modern SCMs applied t0.git......cccovveiriieecrrr e 10
WOTKING iN REIEASES......ocueeieieiee et rrme et te et ement e s teetesneesreentesreensnnnseenees 13
Differences in building and deployiNg.........cccveiiiieiecrie e smrrre e e anaese e 13
Mainframe develOpPMENT aNA SCOMES......cciiiiiieieiieaere ettt ettt r e seeet e b saeesbe e e sae e bessenmesbesneesreenes 16
Layout of Dependencies of a Mainframe appliCation...........ccvviiiiecmeiienieneere e e 16
APPLlICAIONS AN PrOGIAMIS.eiiiiiiieieeiee ettt et sae et emeae e bt e besaeesbesaeesbesasamnsbesasesaeesbeennesbeennas 19
Applications and appliCationN QIOUPS........cccueeeeririereereeeese e siee sttt reseesee et sbeesbesaeesbesnenssaeenee e 20
CrOSSCUING INTEITACES. ... ittt sttt eeme et b e senae s et e et e sae e eesneeneeanas 22
SCIM SCENANOS.....eeueeueeateie et emeet ettt ettt b st bt e st eeet b e bt e b e eh e e bt AR e eh e bt seeme s e s e s e e e b e s et e e e e bt ebeeneeneeanennas 24
Develop at application Scope, then integrate eattbpt new Interfaces........c.ccoccvvvevviveceninseenennne 24
WX (o]) 0T TN o 0o === 27
SCM QY OUL SCENMAKTIGS. .. veeveeuerieeereeseeemrresseesseessesseestesseessnemsssesseesseasessseesesssemmnsesseesseensesseessesseessnnmssees 28
Integration scenarios of shared INtErfaces. ..o iieiiieeese e e 38
1070] o [o1 1 15] o o OSSPSR 57
BUII SCENATIOS. ...c.ueiiteeii ittt eeete ettt e s he e bt et e b et e s bt emente s heesbeeabesbeentesseesbnmseesbeenbesaeeneas 58
LS = o1] o PRSPPI 58
LT o= TT o T o 1071 o ST 59
Build strategies in relation to discussed integration SCENANOS.........cccvecvieeeereieereseeneeee e 64
(00] o [ox 111517 4 OO TP P TP SORSTRPRPRRORPIN 66

2 KEFEGQAa O2 YAV Ay LI NI L0820 e 67
Y o 1= T | OSSR 68
B Lo =30 1o (U= 68
© IBM Copyright, 208 2/69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

© IBM Copyright, 208 3/ 69 Version 1.0.10ct 15, 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

About the authors:
Dennis Behm, IBM Germangiennis.behm@de.ibm.com
Nicolas Dangeville, IBM Frandangeville.n@fr.ibm.com

Rosalind Radcliffe, IBMLS, rradclif@us.ibm.com

A very special thanks to the BNP Paribas team: Alexandre Antonescu, Sylvaine Caramelle, Pascal Rotilio and
Frédéric Soigneux

Thank you to the following reviewers:

Bruce Green, IBM Development Manager RTC Enterprise ExtenBependency Based Build

Daniel Bruce, IBM Dependency Based Build Developer

Francois Dumont, IBM Offering Manager for IBM RTC Enterprise Extensions, Dependency Based Build
Jenny Nicholson, IBM Continuous Integration Program Manager

Jorge Dia2BM Consultig IT Specialist

Liam Doherty, IBM Senior Software Engineer

Suman Gopinath, IBM Solution Architect for DevOps for IBM Z

© IBM Copyright, 208 4/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Introduction

This document is intended as a reference for organizations who are intere@stadving from traditional
mainframelibrary managers to a modern Software Configuration Manager(@€iM)systemsupporting
parallel developmentincludingranching and merging technologies.

This document outlingkey differencedvetween modern SCMandtraditionalmainframe approache3he
purposeis toreviewrelevant areagequired whenmoving to a modern SCMomparing he capabilies

and providing explanatiorfer how to adopt the new capabilitieSThereisan emphasis ohow an existing
mainframe application can be componentizashd how the applicationinterfaces can be describethd
managed as well as then built. This paper is the firstpart of the story for a migration. Additional papers
will be published describing areas such as packaging and deployment.

In this paper we willuseGitl and Jenkins as the example modern capabilit@kis the defacto standard

for the open source communignd is growing within major organizations. The industry estimates 48% of
the software configuration managementis now taken by Git. Currelehkingis the mostwidely adopted
continuous integration coordinator for pipelines.

We will uselBM Dependencyased Build which enables you to implement mainframe build automation
with Gtand Jenkins for traditional mainfranaetifacts.

This document is intended for build administrators from both the distributed and traditional z/OS sides as
well as anyone intarsted in learning how traditional mainfranagplications can take advantage of the
capabilities of modern development tools.

Please visit the IBM Dependency Based Build Communilyt@at/ibm.biz/dbb_commurity to address
qguestions and comments regarding this paper and get in contact with the authors. Look for

https ://github.com/IBM/dbb for additional help for developing your own IBM Dependency Based Build

scripts.
The landing page as well as the documentation links for IBM Dependency Based Build are:

https://developer.ibm.com/mainframe/products/ibrdependencybasedbuild

https ://www.ibm.com/support/knowledgecenter/SS6T76_1.0.1/welcome.html

1 https://git-scm.com/Severatistributions available, like GitLab, bitbucket, GitHub
2 hitps://jenkins.io/
© IBM Copyright, 208 5/ 69 Version 1.0.10ct 15", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772
http://ibm.biz/dbb_community
https://github.com/IBM/dbb
https://developer.ibm.com/mainframe/products/ibm-dependency-based-build
https://www.ibm.com/support/knowledgecenter/SS6T76_1.0.1/welcome.html
https://git-scm.com/
https://jenkins.io/

What does SCM stand for?

SCMis the abbreviation for Software Configuration Managemetis also useddr SourceControl
Management. Software Configuration Management is the task of tracking and controlling changes in the
software development processSCM provides practices suchtastrackingofthe version of configuration
items.A group of files with dedicated version is called a baseline of configuration items.

Software Configuration Managemeatso includeshe actual process of modifying the configuration items
and implements a way teontrol the change procesalso known aghange management

A subfield of Software Configuration ManagementSsurceControl Managementwhich covers the
different areas of versioning configuration items, suchhasisolation of different development activities
into branches as well as practices like tagging, mmgr@nd checkin and checlout operations.

Software Configuration Managemaeditffersfrom theterm of Software Change Management whichis used
inthe mainframe domain as the practice of version control and journaling the different chédoetygsen
versionsin a library structure.

© IBM Copyright, 208 6/69 Version 1.0.10ct 15, 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Mainframe Development practices and key concepts of
modern SCMs and development

Mainframe Software development started before the foundational concepts of configuration management
were adopted in software development practicesh& nextsectionis intended as a level seh how companies
are currently working withmainframeLibrary Managersand gives an introductiorio the key concepts of
modern SCMs.

TRADITIONAL MAINFRANBRARY MANAGBSSCMCONFIGURATIONS

Most of the traditional mainframe solutions control libraries on the mainframe and therefore are called
library managers. The action to chemlt code from a repository is usually known as the reservation process
becausefiles get locked by the developer for the tiofieheir change requestThideadsto a serialization

of processing change requesg&inceonly the files which the developer intends to edit are reserved and
copied to the development stage, there is only a small subset of the overall controlledriites i
development level(This may ba single development level that alevelopersrhanges are copied or

may be a more isolated area with justthe contents of a set of related changes known as a patkdge.)
able to compile a program, the library manager relies on the concept of concatenation of the build path
through the SYSLIBwhich means that the different stages are concatenated like a class pa#wvan J
development.

LS (i Gs® ascenarioto clearlyillustrate this conceptWe assume four staging leveldevelopment,

functional tests, acceptance test and production.this environmenthree parallel paths have also been

defined. ¢ KS RS@St 2 LISNE f r&qlifedto gdmotd hiskcha¥gehboligNJth&se Ataging
environments. Depending on the library managawhen Dirk checks out the file itight be in a
development level oit mightbe in anisolated package. The firstthing Dirk mustdo is identify which of the
available paths he willsebased onthe changehmakesL ¥ A (G Qa |y SYSNH®etéuse OKI| y 3
hemustdza S GKS SYSNHSyOeé OKIy3S LI (Ko ightoe asgighadayahii |y S
based on the planned time for the release of the function, or highhhave to look to see which
environment is not currently changing the same parts hewditkon. Once he has the path he can check

out the file and begimo work.

If Dirkworksin his own package, then leentinuesto add files to the package and builddtest his change.

Once satisfied with the changes and ready to promb&needs b run an audit check to see if anyone else
has changednything related to his change, such as a copybook that has been included. If other changes
have already been pronted, he must then get those changaso hispackagerebuild, and test before
moving forward.

If Dirkworksin thedevelopment (dev)ibrary level, then all other changes in thdgv levelareautomatically
included in his change. When ready to mdeeward, he must check to make sure any changes he may
have picked up are also ready to move forwalfchot, then he must manuallyemove tre other change,
rebuild, and then retest to promote.

© IBM Copyright, 208 7169 Version 1.0.10ct 158", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Dirk identifies the programs
he plans to edit and the pat
he will follow

Dirk also checks if other
changes will move forward o
not. He may need to rebuild

retest before promoting

He checks out the members
to the development stage o
his own package

Based on the list of
dependencies, he checks i

there are any other change;

with a dependency to his

Dirk starts modifying the
members.

Dirk needs to identify and
anticipate dependencies to
other members.

work in the staging hierarch

Figurel Workflow example, working with a library manager

As you can see from the scenario abdkiere are many manual tasks andreviews that must be performed
to work on the function. Manyimes,rework is required due to late decisions about what function will
move forward and whatwl not.

Have a loolat the pros andcons of this approach:

mainframe development teamghighly manual and repetetive
are used to this approach tasks to check for dependencies

does not need much space |serialization of work

when working with subsets of
the configuration,
dependencies to other activites
in the staging hierachy remain.

Figure2 Pros andcons of working with library managers

© IBM Copyright, 208 8/69 Version 1.0.10ct 13", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

WORKING IN FULL CIGNIRATION

Compared tahe approach describedbove modern SCMasethe concept of configurations. A definition
of a full configuration canbé ! O2 vy ¥ A 3 dzNib of A givén list af files, da® of them at a given
version. A configuration can have various scopfes example an application component, an application, a
domain,2 NJ Y2 NB ¢

4 |7 mywebapp @ 205 Projects | [y Project Explorer 53 } BB~ | 7= 8
» ‘&3 Deployment Descriptor: Archetype Created Web Application 4 55 genapp.core (dbehm.insurance.development workspace - Insurance.App B
4 32 Java Resources 4 55 208src
4 [src/mainfjava . &% COBOL
4 com.alex.myweba > & COPYBOOK
A Sxmywebapp » 55 MAP

> [J] HelloWorldServicejava 4 £ genapp Kz

> 1] Testjava 4 G5 208src

47 COBOL
5 LGACDEOL.chl
) LGACDBO2.cbl

4 (3 sre/main/resources

m

X applicationContext.xml

[src/test/java B LGACUSOL.cbl
4 =) Libraries) LGACYSOL.chl
. =) Apache Tomcat v7.0 [Apache Tamcat ¥7.0] I LGAPERDL.chl

- = JRE System Library [jdk1.7.0 75 2 LGAPDBOL.cbl
5| LGAPOLOL.chbl

> =i, Maven Dependencies) LGAPVSOL.chl
» mi, JavaScript Resources Z’—%j LGASTATL.cbl
» L@ Deployed Resources 5 LGDPDEIL.chl

) LGDPOLOL.chbl

> = src
et | LGDPVSOL.chl
[targef 2] LGICDBOL.cbl
[pom.sml 5/ LGICUSOL.cbl

With a modern SCM the configuration can be checked out together, supporting full isolation. At the same
time, many other developrs can also have their own version of the full configuration. This isolation allows
full parallel development on the same artifacts.

Imagine the following scenario:

1 Aliceworks on a maintenance request of the current release (release 11), while atrtieetsne
Bob implements new features in the same application component for the next release (release 12).

Release 11 >| Maint. R11

| Release 12

1 Aliceimplements the fix in anisolated configuration, while Bob works on the same files for the next
release.

© IBM Copyright, 208 9/ 69 Version 1.0.10ct 15, 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

1 Bdbis a member of team working on features for releaseTlt team can work orese individual
featuresinisolation using feature branches.

Release 11 > | Maint. >
I Release 12 >

| Feature Branch >

| Feature Branch >

1 Once Aliceompletesher changesshe must merge those changes into the release 12 bramch
avoid a regressiofthis merge capability is supported by the modern SCMaBedneedso merge
those changes into his feature branch againusing the $0i8CM functions

Release 11 >— | Maint. >—
| Releake 12 >

| Feature Branch

N

Conclusion: Branching enables teams to sepaaattisolatalifferent development requests like hot fixing,
maintaining the current releaser developing for a future release. It also provides greater flexibility to
select featues for a certain release amdoving features betweeneleases.

FOUNDATIONAL CONCEPH MODERN SCMPPLIED T&@T

Gitis currently considered to be the dacto standard SCM in distributed software development, serving
all necessary practices for the déoper. Othermodern SCMs continue to be used for specific use cases
such as security requirements or highly regulated environments.

Gitimplements the functionality to work in teams, to branch and fork configurati@nd to merge changes
to the common odebaseGit is called a Software Configuration Management solution.

© IBM Copyright, 208 10/ 69 Version 1.0.J0ct 15", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Unlike most other SCMs on the mark&itis a fully distributed SCMrhe Git model isbuilt on the
assumption thatthere is a full copy of the repositanyywheretis used, includinthe entirehistory. With
basicGitthere is no concept of a master or a sery@ny copy could be considered the master. However,
with mostGit implementatiorsin large companies today, theris a centralized instance dbit that is
considered the servefThis instances used for audi$ and pipeline processing. Today there are many
different implementations of aitserver that expand on the bas@itcapability to improve support for
automationand backup.

(Origin) Repository User forks or clones a fi Sandbox
copy of the repository

user
Check-
c:conl?s/ Master Branch U Master Branch
orks
repo branch
Stable Branch

Commits

Master Branch

Stable Branch

Figure7 SimplifiedGitworkflow

Thepictureabove shows the distinct stepsGituser performs to edit codandshare itwith the team. The
dark blue rectangle representscagntral Gitrepository serving two branches (master + stable).

SinceGtis a distributed SCM, each developer workshis own Gitrepository.Acentral Gitrepository is
the single sourcef truth, which will be calledrigin.

1 To edit a file, the user firstlonesthe full repository to his workstationincluding all defined
branchesand its history.

1 Then he poindto the branchwhere he plans to workde checks outthis branch to his sandbpx
which ishis environmentor editing
He makes changes and theammitsthem to his local copy of the repository.

1 To sharethe commit with the team and to the rootrepository, he needgushthe commit from
his copy to the shared repository.

9 The developer can also create personal bragmthichwill also be pushed to origin.

© IBM Copyright, 208 11/69 Version 1.0.10ct 13", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Please refer to the offici&itdocumertation athttps://git-scm.com/doc

© IBM Copyright, 208 12/ 69 Version 1.0.10ct 13", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772
https://git-scm.com/doc

WORKING IN RELEASES

Branches help development teanswork on several software releases in parallel.

Mainframe developments done incrementally working a few parts ata time, which in some environments
allows deployment to production when requiredJnder the covers, change requests are handled in a
sequential manneif they affect the same cod&/hen an emergency change ohigher priority changeis
required, it can create a situation where the current work must be backed out so the priority work is
completed firstThe lack of true parallel development limits what can be done without doing lots of rework
to back outchangesor manually bring changes together. Thimitation can attimes causa developer to
losechangesvhen emergency changesustbe made.

These strategies do not provide a formal plamhow to work on a larger scate how to handle conflicting
and depending change requesisreating adrge demand forollaboration betweerindividual developers
anddevelopment teams This impact magnifies as more changes depend on eachatitetesting needs
to be coordinated. Timelinasustbe negotiated between the ipacted development teams, which casse
inefficiencies in the development procesto reduce tiis need for coordination, developmetgamsagree
with the line of business on a fixed release cycle.

For practices like Continuous Integration and Continuoesi®ery, the fundamental goal is to have very
shortrelease cyclesToachievehis goal development teams investin automatiamd the ability to isolate
and integrate quickly

The SCM needs to support the methodology used for releaseaning that several configurations can
existat the same time. During a release, a teavill reachmultiple different milestonesthat should be
reproducible atany given time. For exampleSicrum the end of a sprintis a milestone.

Modern SCMs providéhe function ofidentifying a set configuratiofor a milestone, many times called a
baselineForGit, this functionality is called a tagThis function provides the ability to mark important
points in history within the configuratiorsuch as areleasecandidate, the end of a sprint, a certain
configuration for a builgor the actual released software.

DIFFERENCIEBUILDINGNDDEPLOYING

Ly G2RF&Qa YI A ywboedshidding &ndfplicatibaYoSusses on the compilation and linkage
of the modified source files. Compiling alidking on a file basis or onsamalldefined list of files is the
common approach.

3 Article on Continuous Integration for Rapid development
https://martinfowler.com/articles/continuousintegration.html

4 https://git-scm.com/book/en/v2/GitBasicsTagging
© IBM Copyright, 208 13/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772
https://martinfowler.com/articles/continuousIntegration.html

In distributed systems the build is managed by a build managesgsiem. For example, in C/C+ake
manages the buildn Java developmenGradleMaven or At usuallydrivethe buildwith scripts defining
the order of generating the binary files. The build management sysitees automation to identifyhat
was chaged as well as the relevant dependenci®ery often, this leads toompiling all parts to generate
the new complete application. leachof these cases, there ia build administratordefining the build

process.

In traditional mainframe development, éne is a hierarchymapping b the testing environments.
Developers promote their changes to move to the next stage of testing. This leads to a complete
serialization of development activities.

Production

Acceptance

Test

Development

One of the key differences between traditional mainframe baidd distributed buil@dis working in a
shared environment and having a static path for promoti@nsusthe ability to work in an isolated
environment anchot requiringa static promotion path.

Distributed development teams work and test on isolated branchigh® SCM and the test environment
(seeFigure9 Isolated development branchgdikebranches of a tree.

© IBM Copyright, 208 14/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

‘ Master

‘ Feature 1

1
Release ‘ Maintenance
Integration ‘ Fix 1

1
Feature 2 ‘ Feature 3

Figure9lsolated development branches

© IBM Copyright, 208

15/ 69 Version 1.0.10ct 15", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Mainframe development and scopes

An IT system is developed by many teaamsd composed of different applications driven bye line of
businesseand consumersApplications need to interatd provide the overall systemnd interacthrough
defined interfaces. Using wetlefined interfaces allows the parts of the application to be worked
independently without necessarily requiring a change theo parts of the system. This application
separation is visible and clear in a modeé8&M allowing clear identification of eaatf the distributed
applications However, in most library managers, the applications all share a set of cortibaimies so t

is much more difficult to create the isolation

In this section, we discuss ways of componentizimagnframeapplicationsso theycan be separated and
the boundariesmademore easily visible.

LAYOUDF DEPENDENCIES RMAINFRAMEBPPLICATION

From aruntime perspectiven z/OS programs rureither independently (batch programs) online ina
middleware (CICS, IMB&)ntime environment Programsanusemessaging resources like MQ quewes
data persistenein the form of database tables, or file®ragrams caralsocallother programs.|In z/OS
called programs can either be statically bound or use dynamic linkiegCOBOL program is the first
program in a run unit, that COBOL program isrte@n program. Otherwiseéhe COBOL prograand all
other CABOL programs in the run unit are subprogram$heruntime environment involves various layers,
includingdependencies expressed between programs and resowcgsograms and subprograms.

There are multiple types of relationships to considiresource filesnthe SCM produce the binaries that
run onz/OS To create the binariesa set of source level dependencies must be understood. There is also
a set of dependencies used during run time. These multiple levels of dependencies are defiifiedentd
ways, and in some cases notclearly defined attdlerstanding and finding the dependenciiessource
filesis thefirstchallenge.

Building a program involves different steps:

1. CGompilationincluding anypre-compilation steps, defined as expit steps oras option of the
compiler, createsa nonexecutable binary (object deck)e.

2. Linkeditwhichassembésthe objectdeck of the program with otheobjects and runtime libraries
as appropriateLinkedit can be driven by instruidins (a link cardyom theSCM omsdynamically
defined inthe build process.

5 See COBOL Programming Ghidles://www -01.ibm.com/support/docview.wss?uid=swg2 7036 78Ghapter
Usingsubprograms
© IBM Copyright, 208 16/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772
https://www-01.ibm.com/support/docview.wss?uid=swg27036733

Source code Oibpect code Load module

COBOL PROGA PROGA
ERCHA
e COBOL
2 — lr Call | Call
Ca campl PROGE g ™, FROGE
PROGE 2 /’
- \ /
T /
Linkage !
editar ’ .(;
Fa PROGE
Assemibler FROGE I;’

FROGE — Asseambler -

As part of the currenbuild process somedtlitionalsteps, such as binds to databases, are sometime
included Thefunction of these stepss to prepare the runtime for a given execution environmertiese
should not be included in the build process itsblft should instead be included inthe deprogntprocess

Source dependencies during the bdiffiér from runtime dependencies

Most of the time when people think abowtn applicatiors A (i Gadruntim@oiyit of view. Several
componentsare required for an application to rusome of these are required as dependencies such as
the database or middiware andts configuration, others are required as related such as other applications
that might be called.

Everythingunningin a runtime environment starts as source froman SCM. Or at leastit all should when
you consider infrastructure as codé&ane source files represent definitions or are scripts thag not
required to be built.Those that dorequire being built generally require other source files such as
O2L)o6221azx odzi R2y Qi,foNa&dmita. S8Bne HFKNS solirte filfee alRsSifcludedini A 2 v
many different programs, for exampl& copybook can be used by many programs to represent the shared
data structure. It is important to understand the relationships and dependencies between the source files,
and when those relationsps or dependencies have importandde copybook is required to build the
program soit is required at compile timebut it is not used during run time. The configuration for a
program such as the CICS transaction definition or the database sdkeehated to the applicationbutis

required only for the runtime environment.

A concretedependency is the interfacgescriptionwhen calling aprogram A copybook defines the data
structureto pass parameters to a program. So, the copyboakpertant to be sharedvhile the program
ispart of the implementation

© IBM Copyright, 208 17/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Programs call each othetter dynamically or statically

On z/CS there are two ways programs are generally caldgtiamically and staticallyStaticaly called
programs are linkedogether at build time. These dependenciesustbe tracked as part of the build
process teensure they are correctly assembléebr dynamic call#he two programs aretotally separate.
Theprogramsarebuiltand linkedited separatelyAt runtime the subprogramis called based on the library
concatenation.

Many organizations have been movingiticreased usage afynamic calls as thapproachreduces the
complexity at build time. However, ithapproach means thate runtime dependencies need toetracked
and understood if any changes anadethat require updates in both program and subprogram.

Theseprogramsand subprograms are intetependenteven when using dynamic cal&¥hen a program
calls another prograngenerallythey share dataA transfer of control occurs between the program and the
subprogranwith the main program passing a set of data to the subprogaauigenerally expecting some
data in response

Different mechanisms exiti share pieces of dathased on the languager the runtime. However, there
is a need for the caller and the called program to defheedatastructureto be shared

The call of a subprogramis based on a list of transfer parameters, represented in the interface description
likean API, butitis more tighty 2 dzLJt SR § K| aseéd2AMd. 8 Q& w9o{ ¢

You commonly define your shared data structure in an included sourcef@ifeexampleCOBOLluses
copybooks.

© IBM Copyright, 208 18/ 69 Version 1.0.10ct 15, 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

IDENTIFICATION IDENTIFICAT]
PROGRAN- 10 PROGRAM- 1
ENVIRONMENT DIVISION. ERVIRONMENT DIVISION.

DATA DIVISION. DATA OIVISION.

PROCEDURE DIVISION. PROCEDURE DIVISION.
PARA-1. PARA-1.
DISPLAY “Mello, world.”. DISPLAY “Hello, warld.”.

EXIT PROGRAM.
END PAOGRAM HELLD-WORLD.

Private data

Data structure 2
(populated by
Caller)

Data structure 1

::D}Ea structuae:Z:)

etc.

Transfer of control Call
to subprogram

passing data
(data structure 2)

Figurell Transfer of control sharing data

Itis very common to definmultiplecopybookdor your progransto isolate data structures and reuse them
in other areas of your application componehisingopybooksallowsmoremodularity at source levand
facilitatesdealing with privatend sharedlata structures, or eveprivate or sharedunctions.

APPLICATIGNND PROGRAMS

In a web application, itis relatively easy to define an application because the physical dhifaist
deployed ighe completerepresentation of such an application: the EAR or WAR file. IWilmelows world,
it is more complicatedsincean application can be made of several executables and, Dutgshese are
generally packaged together in an installable application or defined by a package manager.

An application is generally defined by the fuimet or functiors it provides Sometimes there is a strong
mapping between the physical patthat are shippedand sometimes itis a set of parts that run the
application.

In the mainframe, we faltloser tothe second casehere applications are defined ynctions. Hhwever,
based on the way the applications hayr@wnover the yeas, there may be no clear boundary as to where
one application ends and another one begiAa applicatiorcan bedefined physically by a set of resources
(load modules, DBRMs, definitiorthat belong together as they contribute to the same purpose: the
calculation of health insurance policiesistomer account managemerstc.

© IBM Copyright, 208 19/ 69 Version 1.0.10ct 15, 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

At the sourcefile level, the relevafitescontributingto an application are derived from the runtime of an
application. Thee filescan usually be identified by different means: a set of naming conventtbes
ownershipinformationstored in the SCMtc. It may not seem obvious at firgtance, but most of the time
itis possibleto define which source files contribute to a given application.

Scoping your source files to an application has many benefits. It formalizes the boundaries of the
application, and therefore its interfaces; ilals to define clear ownershipndit helps with the inventory

of the portfolio of an organization. Planning of future features to implement should be more achasdd

on this scoping

APPLICATIGNND APPLICATION GRS

Within an organization, multig applications generally make up the business functitm insurance
company may have applications dedicated to health insurance, car insuaregnal healthor group
healthpolicies Thesepplicationsmay bemanagedy different teamsbutthey mustinteract. Teamsmust
define the interfaces or contracts between the applications. Today many of iimsmctionsare tighty
coupled with only a shareaterfacedefining the relationship.

la SQ@S far8&ifional 2OSTppNdations the inface is not separate but defined in source via

a shared interface definition, generally a copybook or include. This source mustbeincluded in each program
build for them to be able to interact. With this information, an application can be defined byntaio
components shared interface that are used to communicate with other programs and the actual
implementation of the program

It is important to notethat shared copyboakcould be sharedot only within an application but across
programs, or acros applications. The only way other programs or applications can interact with the
program is by including the shared interface definitidvz/OSload moduledoesnot work likea jar file,
becauseétisdoes notexposinterfacedefinitions

© IBM Copyright, 208 20/ 69 Version 1.0.10ct 15, 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

/ Application 1 \

Public Interface
of Application 1

Private Implementation
of Application 1

Figurel2 An application exposes a public interface

As applications communicate, their implementation consumes the public interface of the applioaifons
whichthey interact.This concept of a public interface is commonJava prograns and the way the
communication between applications is defindthis principlecan also be applietb existing COBOL and
PL/Iprogramsto help explain the structure required for a modern SCM.

© IBM Copyright, 208 21/ 69 Version 1.0.10ct 13", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

-

Application 1

Public Interface

of Application 1

Private Implementation
of Application 1

~

S

4

-~

Application 2

Public Interface
of Application 2

N O

Application 3

Public Interface
of Application 3

~

Private Implementation
of Application 3

Private Implementation

of Application 2

Figurel3Applications consume pblic interfaces of other applications

CROSSUTTINGNTERFACES

There are additional capabilities that mighéed to be shared in addition to sets of data structures for
application communicatiorThesecapabilitiesnight include standard security émgging functionsindcan

be considered crossutting interfaces. Theseapabilitiesmay be developed once and then included in
many different programs. It would be very helpful if these additional induckpabilitiescould also be
handled as shared oaponents with their own application lifecycle. The challenge comes when these
components change in a nesompatible way. These types of changes are generafilgquentbut might

be needed attimes.

© IBM Copyright, 208 22169 Version 1.0.10ct 13", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

/ Application 1 \

Public Interface
of Application 1

Private Implementation
of Application 1

\ Cross cutting interfaces

>
/ Application 2 \ / Application 3 \

Public Interface Public Interface
of Application 2 of Application 3

Private Implementation Private Implementation
of Application 2 of Application 3

Cross cutting Cross cutting interfaces
interfaces

Figurel4interfaces useddy applications

In the preceding sections, we have laid out some of the key factors when considering the source code of
traditional mainframe applications. The environment generally consists of many different applications that
canprovideshared interface and couldtonsumeshared components, or crosautting interfaces.

The knowledge of thesfactorsand their respective lifecycles can guide thesiredstructure ofsourcefiles
inthe SCM. Several patterns are posstblgrovide appropriate isolation, butto also provide appropriate
sharing based on different requirements.

© IBM Copyright, 208 23/ 69 Version 1.0.10ct 13", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

SCM scenarios
DEVELOP AT APPLICNTSCOPETHENINTEGRATE AND ADQ¥EW

INTERFACES

FHrstwe consideithe applications that provide interfaces amely on other applications interfacegach
applicationhasits own lifecycle of changes. In this process changes are fttaglehangesarestabilizel,

and thengo to productionln the end, there is a single production execution environment where all the
applications will runThe applicationanust integrate but the most commonbreaking pointis their
interfaces. Ifan I LIJLJ A Qtdifdc@ ofidhdesn a nonbackward compatible manner and the other
applicationsdo not react to this changetd atleast recompile the modules affected by the interface
change), therthe productionapplicationwill break.Therefore most changes are implemented in such a
wayso thatthe structure of the data thatis shared is not changed, butfiller fields are useta is added

to the end where only applications who need to reactto the change are required to respond.

Thereareseveral type®f changes that can be made &minterface The majortypesare:

- A backward compatible changélhe interface banges, butthe change is done such that all
applications do not need to react. @lprocess of reacting to changes is caléatbption The
applicationsconsuminghe interface are referred to as consumerstypical example is when a
field is added toa data structire, but this field does not have to be handled by most applications
except a seleedfew, which requested this new field.

Usually, fillers are used in a data structure and when people declare a new field, the overall
structure of the data structure stays the sarfimly the consumers interested in the new field need

to adoptby using the new element in the interfacghe othes should use the new interface to stay
OdzNNIEy (i 06 dziiadépitatdhis poirs SsRandagi practice is @dopt the changatleast

for those programs with are changing andecompiling for other reasons. Many organizations

R2y Qi R2 [iRALAG AGRYLISdz2FA £ GKS OKFy3aS KIFa YIRS Al
dependent on a change that gets pulled from the release latein the cycle.

- Abreaking changeA data structure has changedsuch a way thathe overall memory layout of
the data is impacted. It could be because of an array in a data structure. There are other cases as
well (such aghanges imrraysor condition namehanges also known devel 88)In these cases,
all ofthe consumerseed torebuild, whether they havéunctional changes ttheir code or not.

Especially with breaking chargge process needs to be defined for plannengddelivering applicaton
Ay G SNF I O NspieviddHegcHilfkithis processs called thedoption process.

Today the adoptionprocess ioftenhandled by an auditreport generally run late in the cydhawever,
havingearly notificatiorand understanding of these changes helps improve and speed delivery of business
function.

© IBM Copyright, 208 24/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

[S (céhaider an exampi¢he IT systenof an organizationis madeup of several groups of apigations.
Oneof these groups of applicatiordeals with customer information and registratiovhile another one
deals with accounts anidiventory.

The application groups are managed by different departmentiiwithe companyUsually an application
owner exissfor each application or application group. Tlelsamplealso applies teomparies who danot
perform the developmentthemselves and have outsourcedtie developnent to one or severalT
companies. The 86 LJI y & Qthen redilked, Falidatemnd deploys the newersions

For the next majoreleasethere are several new features that need to be implemented in various parts of
the IT systemAt leasttwo applicationsill be involved, each working on differeigatures, but depending
on each other

[SiQa twovappldatiorbowners manage the set of applicatiom¢he figurebelow. Eachapplication
team hasaccess to the sourdédes (and repository) of a seleetl number of applicationsas well as any
interfacedefinitionsthey need.

Application-team Orange Application-team Green
//"'rf-_____ _____-%x“"‘“m,‘ /./’/ff____ ____Rk““x\\
/ \ // \\
|" App B App App | App App "|
\ 1 21 42 ;o\ 16 32 /
\ / \\ / |
x“"‘a /// \x"“—u " /./

Figurel5Application teamsdevelop new features by making changesto some of the applications of the IT system

The applications are not independent of each other. In fdboth Application16 and Application21
consume the interfaces of ApplicationAlso, Application 32 consumes the interface of Application 2.

© IBM Copyright, 208 25/ 69 Version 1.0.10ct 13", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Figurel6 Applications 2 and 16 consume interfaces of Application 1

The shared interfaces @pplication 1 and Application 2 need to evoltedulfill the businessequirement

In this scenario we assumied modified interfaces are backward compatible. However, Application 16

wouldimprove if it takes advantage of the new fields exposed by Applicati8pglication 32vould also
improve byusingthe updatedinterfaces of Application 2.

All changes are expected to be deployed to production at the s&woethis exampleve assumaeam
Greenisready on timefor shipping the changéut team Orangeis not

If team Greenhas adopted the latest version tfe interface ofapplication lin applicationl16 andteam
Orangecannot deliverits changes of pplication 1, there is a problenthe enhanced aplication 16will
need to be changed to fit with the old interface application 1 Thiscausesa delay and additional
development effortsfor team Greeneven though they were originally complete on time

Such a guation is unfortunately commn. To avoid such situatigrdevelopment teamaise thefollowing
process

Application 21 consumes the new interfaceapbplication 1, because both are part of the deliveryedm
Orange However, Application 16 does not use the new interfand postpons its adoptionlt continues
to use the previous one, which is currently running in production.

Application 32only takes advantage of the new interfaceabplication 2, as both applications aie the
area of responsibility of teai@reen

© IBM Copyright, 208 26/ 69 Version 1.0.10ct 13", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

App App App
21 42

Figurel7 Applications 2 and 16 consume interfaces of Application 1

Whatwe have described hereis a mtlbiyered adoption proces3his isa simplifiedexamplelt gets more
complexwhen Applicatiorl interface changeare not backwar@ompatible.Insuch acase, the adoption
done bythe multiplepartiesneeds to be managed and coordinat@pplication 1, 21and 16 need to be
deployed together)becaus®nlya single version of Application 1 will run in production

ADOPTION PROCESS

Changesto public interfaceshouldbe coordinatedbetween the different applicationsvarious levels of
coordination can be defined:

No process (aka immediate adoption)

As the change is made, everyone else is impacted immedidtelg.is the unfortunateeality of many
organizations today. Developers can be hit by unexpected changes that break their code. To minimize the
risk, developerstart to develop and test in isolation before sharihg updatedinterfaces With Gitand

DBB, theycandevelop inistation, build withintheir isolationandfully test before they integrate with the

rest of the team.

Such a simple scheme is conceivable for interface changes in Application 2 of our example.agubssot
application teams like thehanges in Applicatiol. Usuallyhis schemeloes not scal€ér exampldat works
for small teams, sall set of applications only) and slows down development teams as they groan be
applied for application internal interfaces withoutimpacts to other applications.

© IBM Copyright, 208 27169 Version 1.0.10ct 13", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Eveyone adopts at a planned date

Very similar to the first adoption pattern is the adoption at a planned dAtehange to the interface is
announcedvia a meetingan email or a planning toal Frobably an outline of the future version is made
available withthe announcement.

Everyone adopts at their own pace

The providing team publishes the new interface charnige teamsusing the interfacean determine
themselves the point afccepting the chang® their application.

Whatever adoption method is selected, we need é¢osure here is only one production runtime
environment. On source code level, applications need to consolidate and reconcile development activities
to ensure changes aneot picked upaccidentallybeforebeingready to move forwardThe most common
method is to consolidate in the integration environment.

SCM LAYOUT SCENARIOS

Base scenario

We startwith how an application repository can be organizefibke exploring a concrete scenambhow
a shared interfaceis published to consuming applications.

Forabetter overview, we will firstintroduce theonceptsusedthroughout thefollowingpicturesto explain
the different scenarios.

Git

eposito repository

[
Application 1

Figurel8Legend of usedhapes

© IBM Copyright, 208 28/ 69 Version 1.0.10ct 13", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

The branch, being represented by a simpleline, is highlighted if invol\aeslaenario.

The color coding of th&itrepositorieswill begreyif it belongs toa dedicated team or bluehen used for
acommonly shared repository.

Application 1 Shared Repository

Master Master

WS R2y Qi SELX AOAGE & RA & (AGHEMSIteriks fob tBelcdl& SodinglJS NB& 2 v I f

Branch strategy

Within the Gitrepository,the different configurations of thepplication sourcdiles are represented by
branches Remember when we describda configuration of source files thtincludes all the source files
at a given versioof an application.

Git being a distributed SCM, each developer workthéanr own Gitrepository. Theserepositories can be
synchronzed between each otheA central Gitrepositoryis the central poinof truth inanorganizatiorof
repositories Thisis the one thas the door to the delivery pipeline,iid generallybackedup,and used for
auditpurposes We willbegin withthe branch strategies of thisentral Gitrepository

Thesimplestorganization would be to have a single branch.

Application 1

Master

© IBM Copyright, 208 29/ 69 Version 1.0.10ct 15, 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

2 |

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Tags can be sain any branch to indicate the status of that branch sasha stable version, a version
currently in production, or the lastversiom production

In this examplettework proceeds sequentially. This simple configurattomsed when there is a small team
maintaining an application with a single always acgitzge. (Developersvorkin their own branches, which
arepushed to this centraGit repository, and a pull requessissued to merge the capabilities in for
deployment. These developer branches are deleted as soon as the pull requestis completadswitig
this generally has one stabMasterbranch.)

A second branch is often introduced to allow the development activity to be isolated from the branch which
representsthe current production environment,e. Master.

Application 1
Master

Release

Over time, when the release branchstableand its content validated, a merge is done to the Master
branch. This process allows to slow down deliveries toward a release capturedMiagiterbranch.When
usingGitfor mainframe development, @ recommend tie Masterreflects at any given timéhe contents
declared foproduction.

For larger teams who are not continuously deploying to producgtionore typical scenario involvelsree
branches:

© I1BM Copyright, 208 30/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Application 1

Master

Release

Integration

Through he Integrationbranch developersntegrate and exchangeir code. Unit testand early stage
testingis performed from that branch content. The code is then merged into the release btapcbpare

the release, perform morkater stagdests (ate state integration testing, final performan@nd scalability
testingfor example). A tagn releaseis usem identify a release candidate

The higher you are in the branch hierarchy, branches are expected to be more atabbhanging less

frequently.
Application 1
will)—— Master
_— RE'EHSE‘
B |ntegrﬂﬁ0n

In this schemayou providea level ofisolation for developmentuntil a release is declared. However,
development is still sequential: You a@ot work on the next release in integration when the current one
has been declared®metimes you want a part of your development orgaation to startwork on the next
release earlier, because stakdtion does notequirethe whole team. In this casepadditional integration
branch can beintroduced to let development startearlier.

© IBM Copyright, 208 31/ 69 Version 1.0.10ct 15, 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Application 1

O Master

— RE'EESE
T |ntegrat'|0r|
Integration
Next

Figure24 Temporary integration branch testart new development earlier

Some teams are sap so development is divided intnaintenance andeature teams. Developing several
features of the same application can be challengintfin a single configuratioras eachlequirementcan
change thesame parts for different purposes.

Through isolationan individualdeveloper can work me effectivdy and changes gaim level ofstability
beforesharinghemwith the team. Gitintroducesthe concept of shortived topic branchek A topic branch
is intended to provide isolation for the developer for working on a hotfix, a new featura maintenance
task.

Consolidation of the differentopic brancheshappensmost commonlyon the integration branchfor
example through a merge workflow like ti&tHub pull request

Application 1

Master

Release

Integration

Topic-1

Topic-2

Figure25Topicbranches

6 https://git-scm.com/book/en/v2/GitBranchingBranchingWorkflows
© IBM Copyright, 208 32/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Additionally,developmentteams might need to demand severdévelopmentbranches to separate
integration scenarios dfifferent features under developmenin this case a new branéével is introduced
called developmentwhich merge into the integration branch

Application 1
E———]aster
Release
Integration

Development

Topic

Figure26 Additionaldevelopment brancles

© I1BM Copyright, 208 33/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Team strategy

Git being a fully distributed source control management system and the requirements from financial

authorities for auditability can sound contradictout there are many financial organizations that are

successfully accomplishittge audit and securityaquirements withGit The specificequirementsneed to
be considered in youtesign of theinfrastructure setup an&CM layouDifferent implementations o6it
are provided as cloud solutions liktHuh GitLabor Bitbucket, or many can be run on prengss well
Depending on the selected implementation the team strategy loek different, but in all scenaridiere
will be acentralGita SNIWSNJ {y26y | a 2NRIAY | yR LISNAZ2YL f
workstation.

Working intopic branches providegreatisolation and flexibility to development teambut also raissthe
need forintegration and exchanginghanges with the tearwhich is known as the merge procassGit
Git servergprovide additional workflow support known under the term merge or pull request.

Master, release, integratigmnd developmat branches are shared branchesmaining active for a longer

period. Topicbranches have a short lifecycle. Developersatetopic branchesfor each newwork item
and delete them after integrating the changes with the team.

To leverage the workflow capabilities provided ®itservers personal branches are also stored on the

centralGitserver.

[SG4Qa AYIF3IAYS . 2lHeNBiSaiz&Aiayh&topic brgnSBwithinhis local repository
based on the configuratioas well as the origin repository

Bob

Task-123 Dev Integration Release Master

(1) Create topic branch in

(2) Commit local and remote repository
lacally
Origin
Task-123 Dev Integration Release Master
(3) Push to remote
(4) Merge/Pull Request to integrate
to development branch
© IBM Copyright, 208 34/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

NS LI2 &

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Bob can also backup his work e central server in origin. When he is done with developnamd would

like to integrate with his teammates, Heitiates the pull requestworkflow process. Givethat histopic
branch is stored on the server, a teammate can easily review and approsiedriges before merging them

to the development branchwhen integration is done, the topic branch is deleted. This avoids the
continuous need to synchronize personal branches in personal and central repositories.

A secondhighly unusual and notrecommdad approachunless the branchis goingto live for less than
a day- isto keep topic branches justithin the personal repositoryA scenario could be a prototyping

scenario, which should not be shared with the team yet.

For this scenaridBobdoes notpush his feature branch to the shar&gitrepository, he mergeto the
development branchin his personalGit repository and synchronize the development branch with

development irorigin.

(2) Branch Bob

Topic Dev Integration Release Master
(1) Clones remote repo
(3) commit
Origin
(4) Merge g
Dev Integration Release Master
to Dev

(5) Push to remote

Moving towards theMaster branch within the branch hierarchizngmerge workflow can requimaerging
the branchegotallyor just selectively.

© I1BM Copyright, 208 35/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Bob

Dy Ing=gration Release [SEEY

— Origin

Dev Integration Release Iagher

(2) Synchronize persa-.r.ial"-
repository with arigin

(1) Merge/Pull Request to merge
commits to integration branch

Figure29 Merge commits fromdevelopment tointegration throughpull requests

In case of merge conflicts, Bob needs to resolve them in his personal repository and then push them back
to origin.

Content of branches

The content in the all branchesnlook identical ands generallgplitinto a folder structure separating the
applicationsource filesn different folders for examplefor an application called App 1:

© I1BM Copyright, 208 36/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Interfaces of App 1
Internal source files *

Documentation

* Involves a structure of folders that helps
the team to understand the content and
manage the changes, e.g. business functions

The aboveimplifiedstructure is notthe only possible organization of a branthe key is to separate out

the files into folders which hold related files and to provide an organization that makes sense to the
development team. This simplified structure is showing a Heytel splitto be able to identify a shared
interfaceseparate from the internal implementations

There are multiple possible strategies for identifying shared resources, butitis importantto come up with
a way these are identified such thatthe developes an easy understanding of the impact of his change

Clearly identifying the different file types will also be helpful when defining the bWithin the DBB sample
provided atGitHuh you will findan example usinfyjle.properties whichuses the file extension tmap the
files in the repository to the correctbuild scripfst.this pointwe will not discuss the actual build scriptsin
greater detail butwill discuss thatlater

Finally, we end up havirgpveralGit repositories, one per pplication Our scenario is based on three
branches: Master, Integration and Dev.

© IBM Copyright, 208 37/ 69 Version 1.0.10ct 15, 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Application 1 Application 2 Application 3

Master Master Master
Integration Integration Integration
Dev Dev Dev

The proposedsit repository structure with a repository per application also addresses authorization
concernsthat everyone has full access to the full codebase of an enterprise. Permissions are granted on
repository level of theGitserver.

However,applications depenan each otherlnterfaces of applicationareconsumed by otheapplications
andseveral versions ofterfacescan benvolvedin the development lifecycle

The next sectiomescribesseveral options to managie workflow of public interfaces of applicains.
Choosing the right optioffior your applicatiordepends onmany factorsWe will outline the different
strategiesof how to manage the adoption process of a shared interfaitk regards to the already outlined
adoption strategies. A breakimg disruptivechange of the interfaces needs to be handtitferently than

a compatible changén generaJpeople avoid disruptive changes to the interfatexause it means also a
potential rework for the consuming applicatiortdowever, support needsd be in place for these scenarios.

Option 1describes one possible workflow of hoveeeakingchange of ahared interface cahe managed.
We will consider the perspectives of the interface provider as well as the cons@pé&nn 2outlines a
simpleworkflow for interface changes whiahake sense if backward compatibility can be guaranteed.

INTEGRATION SCENAREIHARED INTERFACES

Option 1¢ Manage the adoption process of a breaking change throagh
dedicateal repositoryfor sharedinterfaces

Scenarioutline
[SGQa O2yaAiRSNI I & O0Sy | NRag ingercaniectedditfeygxpds# afd dorsludie A O § A :
interfacesfrom each other

There is on&itrepository per applicationEach repository contains three branches: Master, Integration
and Develoment. Additional topic branches may existbutare not represented imisg schemas.

© I1BM Copyright, 208 38/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

For the sake of simplicity, we have not introducetetease branch between Master and Integration. A
release branch makes sensein several scenarios, butit alscadgdexity to the process. We will have a
specific discussion about adding a release braarodhhow to deal with it

We introduce adedicatedGitrepositoryto manage the published interfaces of the applications. Each
application will publish in this repdasry its public interfaces. The repository will giwecessd published
interfaces forthe consumingpplications

The interfacesthemselvesare developed within the repository of the applicatilop the owning applicaton
team. Keep in mindhat in z/OSsoftware development, interface specifications are exposed through
Copybooks or Includes filesid are required to build your application programs.

Application 1 Application 2 Application 3 Published Interfaces
Master Master Master Master
Integration Integration Integration Integration
Dev Dev Dev

AsingleGitrepositoryon theGitserveris dedicatedo all sharednterfaces The repository contains a copy
of the Copybooks and Includes, but no implementation logfeorganization of thebranchcontentis
significant herewe manage the official version thfe interfaces in one branch, and new versions to be
adopted in another ongEactbranch contaisall thepublished nterfacesof each of the applicati®) each

in a dedicated folder

Thefolderstructurein a branckcould look likéhis:

Interfaces (source files) of App 1

Interfaces (source files) of App 2

Interfaces (source files) of App 3

Readme

© I1BM Copyright, 208 39/69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Regarding the number of branchasthe published interface repositoryou might have notice that it
does not necessarily match the numberthe application reposdries.TheMaster branch contains the
official versions of thenterfaces Integration is used as an intermediate branch, providing the ability for the
teams to adoptthe change of the interfaxwithin their application.

How does an application publisteciyes of thenterfaceto the Publishedrterfacerepository?

Publish fromntegration
In our scenario, the integration branch is the one where tiegtrelease of the application becomes stable.

The final build of a given program may happen at that stadpe.team creates the packages to be tested
and deployed in runtime environments from these binaries.

Given that the integration branch receives commits from development branches, the source code evolves
quickly.But there are phases whenew versions oftie interfaces become mature and ready to be
published. This could bfor examplein the lastdays of an iteration.

When the team considers the nepublicinterfaces areready to be exposed to other applications, then it
triggers aspecificJenkins buildThe purpose of this build is &xtract the public interfaces die Application
andcommit these files to thdublished Interfacesepositoryinits Integration branch. The build identifies
the files to process (the publiaterfaceg based on the setupf the branch content

This publication bld can be an option of largéntegration build. Triggering it may even be automated (for
example when the application has been validated in QA), but it may notaperopriate that every
integration buildpublistesthe interfaces.

© IBM Copyright, 208 40/ 69 Version 1.0.10ct 15, 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Application 1

Master
Integration — F%J‘ PL.,Ib|IcatI0n Bu.llld
% triggered explicitly

Dev
Extract Application Interfaces and
commit to Integration branch

Published Interfaces
Master
= ' integration

Publish fromMaster
When the releaseis declaredwill bedeployed to production, thévlasterbranch within the application

repositorywill be updatedwith the commitsof integration.ltis now time to publish the public interfaces
as the new official version.

An automatic buildcan be triggeredwhen commitsarrivein the Master branch of the apgicaton
repository. Similarly, it will extract the sourfites (public interfaces) of th®laster branch, and commit
these files, but this tim@ the Masterbranch of the Published Interface repository.

There is now a question aboutthe content of thedgrationbranchof the Published Interface repository.

In the following picture, we propose to updabeth the Masterbranchand the integratiorbranchwith the

public interfaces of Application 1. In more advanced cafeeskampleparallel developmentcommit of a

subset ofntegration), a more complex management of the integration branchisneéd&l. ¢ 2 y Qi RA a Od:
ithere.

© IBM Copyright, 208 41/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Application 1 % |
" M- Publication Build
==—VIast F % ‘
aster . automatic when commit in Master
Integration
Dev
Extract Application Interfaces and
commit to Master & Integration branches
Published Interfaces
Master
Integration

How to onsuneother applicationSnterfaces
Sobackto our scenaridil KSNXSQa | ySSR F2NJ SI @Qublishedindérfac€drotide® y (2 O
by other applicatiorsor crosscuttingcomponens.

We have seen there are various ways to deal with adoptiononsiderchanges fronother application
interfaces that my application is consuming. One adopstnategy is to adopt at mgwn pace. It means

the team decides to obtain updates of interfaces at a given time and remain with this version for a given
period, for exampleaniteration. The team therefore works inisolationduring thattime.

To achieveisolation, the team needs to sttgblewith a given configuration of the published interfaces.
This can happen eithénrough the use o& Gitsubmodule within its own configation orby using alone

of the Published Interfacesepository. the team controls how often the submodules or clone get synched
with the origin.Please keep in mindt one point within the lifecycle the application team will need to
integrate and build vth the officially published interfaces.

Managing its own version of the published interfaces should only be Gerethe development and
application internal integratiophases. This providetull independency from other development activities

[S i Q&onsfderdhe usage of the consumed interfaces through the bwidhave seen there are two
published versiosof the interfaces in two differentbranche$; SG Q&8 RA & 0Odzaa 6KA OK 2y S &
whend . dzii 0 SF2 NB R 2thepuddsindutsistemt SGQa Of I NA Fé

© IBM Copyright, 208 42/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Overview of the builds
There is ongipelinebuild per branch for each application repositpexcept theMasterbranch, which

reflects the contents of the production environment.

Application 1

Master
£
Integration fd %_Ll
Dev rfJL Pipeline-Build

C2NJ GKS aF 1S 2F aAyYLi AOAdlezr 6SQNX y2i O2yaARSNAY3

[SGQa aSS K2g St OKpublidintdrfatesid dificin@STheredve & &et ofl ¢h&ices and
scenarios, primarily depending on the phase youiangith your development.
At one pointin developmenyou are going to produce the official production binarigmst of thechanges

will be independent of other applications, but as described in the intro of this section, there are
requirements with dependencies across application boundaries.

We also have seen that in development phases, isolation might be ne&deprovidehe highestlevel of
isolation, the application team manages its owersionof the published interfacesn the next phasest, i
will alsoneed to integrateand rebuildusingthe official version of thepublished interfaces, when it proceeds
towards producitonto produce the official production binaries.

The following schema gives an overview of the possibilities we are considering for each build:

© IBM Copyright, 208 43/ 69 Version 1.0.10ct 15, 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Application 1

Master

Integration

Dev

Pipeline-Build

\.\

Directly adopt
published interfaces

_______ » Fullisolation

Published Interfaces (Official Repo)
Master

Integration

Published Interfaces (Clone managed by App1)

\ Master

- Integration

Figure37 Builds relating to official or clone repository containing the publishedtarfaces

Two versions of the published interfaces are available: version from Master and the version from
Integration.There is a mechanism for full isolation available in development.

© IBM Copyright, 208

44/ 69

Version 1.0.10ct 15", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Development build
Several scenarios are possible for deeelopment build, based on the requirements of the application and

the phasein the development cycle.

Within the early development phase, the teammyusethe published interfaces of the integration branch
withinthe developmentpipelinebuild, either fom the official repositoryor from their clone if they pursue

full isolation
- ; . Directly adopt
Application 1 Development build published interfaces
Master — = = = Fullisolation
i Dev/App1/Sources/Interfaces
Integration < | Dev/Appl/Sources/Internals
Development | [+

Integration/Common/App1/Interfaces
Integration/Common/App2/Interfaces
Integration/Common/App3/Interfaces

/' orR ™.
Y

Published Interfaces (Official Repo) Published Interfaces (Clone managed by App1)
Master Master
Integration Integration

Figure38Development build consume@terfaces fromintegration branch

In later phasesor if the application does not require early versgwf new interfaces, the team may use
the official production version of thgpublished interface of the Master branch.Usinga clonethat you
synch explicitlyith the Published Interfaces repository is still a possibility, butit is not a requirement
anymoreasthe Masteris meant to be more stablein time.

© IBM Copyright, 208 45/ 69 Version 1.0.10ct 15, 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Directly adopt

Application 1 Development build published interfaces

Master — — — —» Fullisolation
Dev/App1/Sources/Interfaces
Dev/App1/Sources/Internals

o

Master/Common/App1/Interfaces

Integration

Development [‘@‘”\1

Master/Common/App2/Interfaces
Master/Common/App3/Interfaces

/' OrR ™.
A

Published Interfaces (Official Repo) Published Interfaces (Clone managed by App1)
Master Master
Integration Integration

Figure39Development build consumes published interfaces from Master branch

Integrationbuild
[SGQa y2g¢ 02y a buldiNduiiskedarid, tidirGegrittobiiid & yhere the final build of the

binarieshappensitis therefore importantthatthe version of tirublicinterfacesthatis useds compatble
between consumer and producérhe integration build either consumes the version of the interfaces from
Masteror from integration.The latter casenight be caused by the adoption of a breaking change that
needs to be managed: several applicatoeed to go to production together.

© IBM Copyright, 208 46/ 69 Version 1.0.10ct 15, 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

Application 1 Integration build

Master

. , A
e
Integration [“% L Integration /App1/Sources/Internals

+

OR
Master/Common/App1/interfaces Integration/Common/Appl/Interfaces

Development

Master/Common/App2/interfaces Integration/Common/App2/Interfaces
Master/Common/App3/Interfaces Integration/Common/App3/Interfaces

Published Interfaces (Official Repo)
Master

Integration

,2d2Qf t y2GA0S GKIFIG GKS LYGSNFIF OSa LINPOARSR o0& (GKS !
We want to highlightthe buildsestwo different ses of files for the interfaces of ApplicationThe ones
from Application 1 repository and the ones from the Published Interfaces repository.

When there are no breaking changes to the interfaces, itis safer to build with the published version of the
interfaces. It ensures provider and consumer arsynch. When there are breaking changes that will be
published toMasterwhen the releaseis declareithe build needs to use the version from the Applicaton
repository. Other consumers need to adopt the new interfaces.

More advanced casBelease Build
So far, for the sake of simplicity, we hawet introduced a Release branch. But having such a branch is

typical inGitd [SG Q&4 RA&aO0dzaa AG&a LzNLI2&aS FyR GKS AYLX AOIGA

Our workflow so far is focused on creating as early as podsifidgiesthat arecandidatego be deployed.
CAYENRSAE FNRBY RSQOSE2LIVSYyd oNX yOK FNE y2G OFyYyRARI (S
correct version of the interfaces, they have not been validaggdiat best unittested. fie build optiongn
developmentoffer maximal debug capabilities.

© IBM Copyright, 208 47/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

The integration builchowevercan be setup tgproduce such binaries. The build options are optimized, and
the binaries have passed initial tests development phasesA package can be created to be deployed
differentenvironments. If the packageeets the criteria, it could be declared as being ready for production.

Some organizaticsmay introduce a Release branchdissociate the work of integration, still considered
as an extension of developmentrom the work of creating candidates for production. People would
typically do that wherthe development work has been isolated for a long period of time: one or several
new features may have required several iterations to be ready for integration. In thistbasetegration
involves more work. Maybenit testing hagto be performedagain

L {He&eledise brancthatwill therefore contain valid and stabt®ntent. Therelease branch woulle the
one to publishnewinterfaces. Itwould be automatic.

Application 1 % |
- = i i i
e ["% 4 Publlcatlpn Build N
e - automatic when commit in Release
- Release
Integration
Dev
Extract Application Interfaces and
commit to Integration branch
Published Interfaces
Master
— .Integrat'lon
© IBM Copyright, 208 48/ 69 Version 1.0.10ct 18", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

If arelease branchisintroduced, then the release build is the one that uses the interfaces from Master. The
integration build either usgthe interfaces from Master ofrom Integration.Development targetsither

the interfaces fronMaster orlntegration

Figure42interfaces consumed for each build

Option 2¢ Managethe adoption process through publishing shamestfacego
thefile system

Scenariooutline

In this scenaridnterfaces are still published and consumed as we described in the previous scenario. But
instead of using &itrepository to store and version the published interfaces, we use the file system, either
onUSSwith adedicatedset of folders) or MVS (withdedicatedset of PDEg. The principles of publication

and consumption remain the same.

Publishing interfaces just to the file system hmany disadvantagesspecificallywhen it comes to
traceability and auditabilit. You can no longer prove which version of an interface you used in a specific
build. This option is most commonly used for interfaces totally out of your control and are updated
infrequently,such as system includ&he final build of youprogramsmustbe auditable.

The most common use for this isammigration scenariolhe filesystemisused in the transitioning phase
to Gitto enable building applications which reside either in the old SCRlibiThe files still managed by
the old system are usdd Gitvia the file system until everythingis moved over.

© IBM Copyright, 208 49/ 69 Version 1.0.10ct 13", 2018

Develop Mainframe Software with Opensourceifce Code Manageend IBM Dependency Based Build
http://www -03.ibm.com/support/techdocs/atsmastr.nsf/\WebIndex/WP102772

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102772

