Data Extraction Program
For zBNA, zCP3000, and zPCR

User's Guide
CP3KEXTR v4.06 07/30/2020

Tom Harper
Valerie Spencer
Contacts:

Comments, requirements, and questions may be directed to us at these addresses:

<table>
<thead>
<tr>
<th>Tools Team</th>
<th>CPSTOOLS@us.ibm.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom Harper</td>
<td>taharper@us.ibm.com</td>
</tr>
</tbody>
</table>

You can download this document (CP3KEXTR.pdf) and the program package (CP3KEXTR.Zip) from one of the following sources:

http://w3-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS4144
or: ftp://cpstools.washington.ibm.com (click on the CP3KEXTR folder)

Business Partners may obtain the program from the PartnerWorld system:

Customers may download the program from this site:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS4229
Table of Contents

Table of Contents ... 3
Recent Program Versions ... 4
1. Introduction ... 5
2. Quick Start Guide ... 8
 2.1 Preparation ... 8
 2.2 Research ... 8
 2.3 Install the Program .. 9
 2.4 Customize the JCL ... 10
 2.5 Setup the Input Parameters 11
 2.6 Run the Extract ... 13
3. Program Input Parameters ... 14
 3.1 Required Parameters ... 14
 3.2 Reporting Interval Parameters 15
 3.3 Other Parameters .. 17
 3.4 BCU - Parameters ... 19
 3.5 PGN - Workload Parameters 22
 3.6 Convert Tape to Disk ... 23
 3.7 Summary Output ... 25
4. JCL ... 26
 4.1 DD Statement Summary ... 26
 4.2 Return Codes .. 27
 4.3 JCL for zCP3000 ... 28
 4.4 JCL for zPCR .. 29
 4.5 JCL for zBNA .. 31
 4.6 JCL for SORT ... 33
 4.7 JCL to Create Multiple Output Files in One Run 34
 4.8 JCL Generalized for All Job Types 37
5. SMF Input Data Requirements .. 39
6. Map Files .. 41
 6.1 BCU Map ... 41
 6.2 PGN Map ... 44
 6.3 T30 Map ... 48
7. “Data” Output File .. 50
8. EDF Output ... 51
Recent Program Versions

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 4.06 | 07-30-20 | - Remove the sections with the dat file and EDF formats from this "User's Guide" and place them in a separate "Technical Reference" document.
- Rework the BOOSTnn vector and add BOOSTFLA & BOOSTCLA
- Add two new input parms: SELDAT & LIMDAT
- Add a new SIISP (SIIS percent) vector and remove the EFA vector
- In the dat file: add SMF 16 data and add 2 new SMF 30 fields
- Add SMF type 16 to default TYPES= list |
| 3.95 | 04-13-20 | - Add 6 new vectors for EADM compression, from RMF 74(10)
- Add 4 new vectors, E247, E252, E264, E265, with deflate information |
| 3.94 | 11-27-19 | - Add vector RMEMP to report remote memory percent
- Add LPAR vector for System Recovery Boost period, BOOSTn
 =0: none, 1: zIIP, 2: Speed, 4: IPL, 8: Shutdown
- Add 3 vectors to report LPAR Busy time in seconds
 LPARBUSYG (GPs), LPARBUSYA (zAAPs), LPARBUSYI (zIIPs)
- Add DAT field S42DSEXC to indicate S42DSFL1 x'10 bit (Open for EXCP) |
| 3.91 | 09-04-19 | - Make adjustments to CPU MF Formulas |
| 3.90 | 06-28-19 | - Add IOPBUSY & IOPCNT vectors from 78.3 data
- Add HWADIB, HWADOB, HWADCT, HWAIOB, HWAICT
 vectors from 74.9 data
- Fix issue where the DAT file ORHTR field could get invalid characters |
| 3.89 | 04-08-19 | - In SAVE=SORT=ALL run, fix missing CPU model identifier
- Remove stray quote from "TIME_ON_ZIIP" field
- If CMF records are present, add message to print output showing count |
| 3.87 | 10-10-18 | - Add DATA file record type counts, D1=, D2=, D3=
 to EDF HEAD section
- Add run data: Date, Time, SMF dataset, & Version to EDF, DATA, & listing
- Add S42DSSC Storage Class Name to DATA file
- Remove 15 unused EDF items
- Fix es70 S0C9 divide exception associated with LPWLx & LPWIx vectors |
1. Introduction

The Extract program, CP3KESTR, runs on a z/OS system where it reads and summarizes one or more SMF datasets for subsequent analysis by one of the CPS Tools Applications (zCP3000, zBNA, or zPCR).

The program performs these functions:

- Parses the complex structure of the SMF data
- Extracts selected fields needed by the Tools applications
- Combines the data into a series of Extract “reporting periods”
- Produces a flat Enterprise Data File (EDF) that is read by the analysis applications
- Optionally writes a separate DAT file for zBNA with selected SMF fields
- Generates and/or uses several supplemental mapping files

Here is an overview of the data flow:

When the Extract program is run the default is that all input SMF records will be examined, but you can specify particular dates and times to select only certain data. You can also adjust the duration of the reporting period.
Program Inputs

The program uses makes use of several different inputs as follows:

<table>
<thead>
<tr>
<th>Input Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMF data</td>
<td>SMF (the System Management Facility) is a z/OS mechanism that records system and job-related information. The data is represented by a series of different record types each specializing in a different kind of information. The program selects specific record types based on the requirements of the run (more in part 5).</td>
</tr>
<tr>
<td>RMF data</td>
<td>RMF (the Resource Measurement Facility) is a performance monitor for z/OS that collects operational data for later analysis. RMF data is placed into the SMF record stream using record types 70 to 79 (i.e., the SMF dataset includes the RMF data).</td>
</tr>
<tr>
<td>User Parameters</td>
<td>User inputs let you select a variety of processing options and identify what part of the input SMF data you want to examine. Most of the parameters are optional and many have default values that provide standard processing (see part 3).</td>
</tr>
<tr>
<td>BCU Map</td>
<td>Typically I/O control units with identical channel configurations are combined for reporting. This map identifies how (details in part 6.1).</td>
</tr>
<tr>
<td>PGN Map</td>
<td>The program combines service classes for reporting using the PGN map. Usually the program generates the map automatically and then uses it in processing, but if needed you can manually edit the file to adjust the combining (see part 6.2).</td>
</tr>
<tr>
<td>T30 Map</td>
<td>The T30 map provides a way for you to break out workloads in greater detail than the WLM service classes (details in part 6.3).</td>
</tr>
<tr>
<td>IOCP File</td>
<td>The IOCP (I/O control program) produces the IOCDS (I/O Control dataset). This contains details of directors, links, channel paths, units, and subsystems along with other system information. Here “IOCP File” refers to the systems IOCDS.</td>
</tr>
</tbody>
</table>

Program Outputs

These are the program output datasets:

<table>
<thead>
<tr>
<th>Output Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDF</td>
<td>The Enterprise Data File (EDF) is the primary output. It is a flat text file containing summarized data extracted from the SMF scan. The EDF is the input to other analysis applications like zBNA, zCP3000, and zPCR. An example is in part 8.2.</td>
</tr>
<tr>
<td>Print Output</td>
<td>The print listing shows the input parameters specified for the run along with any messages that were generated by the program.</td>
</tr>
<tr>
<td>BCU Map</td>
<td>The program will generate a BCU map if you specify the BCU=AUTO parameter, otherwise it will an existing BCU file (details in Part 6.1).</td>
</tr>
<tr>
<td>PGN Map</td>
<td>The program will generate a PGN map if you specify the PGN=GOAL parameter, otherwise it will an existing PGN file (details in part 6.2).</td>
</tr>
<tr>
<td>DATA File</td>
<td>The program can extract fields from the specific SMF record types and format the data into a flat text file for use by zBNA. The output file is specified by the DATA001 DD and can include fields from type 30, 42, 14, and 15 records. Part 7 gives details.</td>
</tr>
</tbody>
</table>
There are **two** different time intervals that must be considered when working with the Extract program – the RMF interval and the Extract reporting interval.

The **RMF Interval** is the time period (typically 15 minutes) during which z/OS accumulates and summarizes both software and hardware activities. At the end of this interval the system writes the collected information to the SMF dataset and, for many items, clears the accumulators to start again. The RMF interval is set by the system programmers and usually does not change.

The **Extract Reporting Interval** is the time period the Extract program uses to group the incoming SMF data. This is specified by the DURATION parameter and often is set to one hour (which gives more attractive graphs in zCP3000), but setting the reporting interval to be the same as the RMF interval is also common. Data from the SMF records that fall within an Extract reporting interval are combined and reduced to a single value (a total, an average, a bit indicator, etc.).

For example, consider one specific measurement item, the “start subchannel count”. Processing for this item will flow through the following steps (over-simplified for discussion):

- During the 15 minute RMF interval while the original applications are executing, this counter is incremented by the system for each start subchannel request.
- At the **end of the RMF interval** that count is written by the system to an RMF record.
- Later, when the Extract program is run it scans the RMF records.
- The “start subchannel count” from each RMF record (type 74) is totaled within the duration of an Extract reporting interval (e.g., records from 4 RMF intervals would be encountered for a 1 hour reporting interval).
- At the **end of the Extract reporting** interval the total is divided by the number of values giving an average.
- That average is appended to the string of values reported as the “start subchannel count” vector (DASDIOV) in the output EDF (resulting in one value in the vector for each Extract reporting period).

Summary -- for many data values the progression is to combine execution-time measurements into an RMF interval and then further combine these into an Extract reporting interval.

SMF Record Selection

It may be that the input SMF dataset contains information for only one partition for one particular time period. This is a simple case where you may want to accept and process everything in the input.

A more complicated situation is when the SMF input includes data for several partitions, perhaps generated over many days. In this case you can ask the program to select just certain records belonging to a particular partition or a specific time period. I.e., you can extract and summarize a **subset** of the original data. (see **part 3.2**).
2. Quick Start Guide

This section provides a checklist of the basic steps needed to get started running the Extract program. This is a simplified approach and more details are provided in Part 3 of this document.

2.1 Preparation

a. Have a TSO user ID and password on the z/OS system where the Extract will be run.

b. Identify the necessary parameters for the JES JOB card for that installation.

c. Get the SMF SysId of the system(s) for which we are Extracting data (see also part 2.5).

d. Decide when and for how long you wish to sample and set the Extract reporting interval accordingly (with the DURATION parameter). For performance analysis using the 15 minute intervals may be reasonable. However, for doing capacity planning one-hour intervals are a minimum. Depending upon the amount of data available different durations may be recommended (but nothing less than 5 minutes). If you don't know where to start use a week of one hour samples. More details are in part 2.5 and part 3.2.

e. Know the dataset names of the SMF files for the samples you have chosen.

2.2 Research

If possible, sit down with the system programmer and discuss these points:

a. Review the SMFPRMxx member of `SYS1.PARMLIB`. Verify that you are collecting the SMF record types you will need.
 - For zPCR types 70 through 75, 78 and 113 are required.
 - For zBNA also include 14, 15, 30 (2,3,4,5), 42 (6)
 - For zCP3000 use the zPCR types and also optionally 42 (6).

b. Instructions for collecting 113 records are at this link: http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TC000066
 Note: zCP3000 requires Basic and Extended counters.

c. Verify that you are doing INTERVAL processing.

d. Ask about the job that dumps off the SMF datasets. Sometimes that job will exclude certain types and they will not make it to the output dataset. Verify that the ones you will need are present. You can use either the standard SMF dump program, IFASMFDP, or if the installation uses log streams for the SMF data you can use IFASMFDL to select a subset of SMF record types.

e. Ask whether the SMF records are in sequence by date and time.

f. If possible, obtain an I/O configuration diagram for the installation.

g. If you will be using the FICON aggregation function of zCP3000, learn the name of the IOCP dataset and the name of the LPAR partition you will be studying.
2.3 Install the Program

a. Download the CP3KEXTR Extract Program to your PC

CP3KEXTR is an assembler language program that is distributed in LOADER format. The file CP3KEXTR.zip contains both the program and the JCL. Download this from one of the following sources:

 http://w3-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS4144
or: ftp://cpstools.washington.ibm.com (click on the CP3KEXTR folder)

Business Partners may obtain the program from the PartnerWorld system:
https://www-304.ibm.com/partnerworld/wps/servlet/ContentHandler/tech_PRS4144

Customers may obtain from:
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS4229

b. On your PC, unpack CP3KEXTR.zip to obtain the CP3KEXTR.bin file. This is the file that will be uploaded to the TSO system.

c. Sign on to TSO

Log in to the TSO system (where you will run the Extract program)

d. In TSO, Allocate the upload dataset

This is the dataset into which you will upload the CP3KEXTR.bin file. In ISPF/PDF 3.2 choose Allocate. Then,

- Name the new dataset CP3KEXTR.UPLOAD.
- Set the RECFM to FB (or F) and the LRECL to 80.
- Specify a BLKSIZE of 0 for system determined block size. If system determined block size is not implemented zero will give you an error. In this case use 6400.
- Suggest a primary extent of three cylinders with a secondary extent of one and no directory blocks.

e. Upload the Extract program

The CP3KEXTR.bin file in the PC contains binary characters and must be uploaded in binary mode. Use FTP to transfer the file. Open a command prompt window and switch to the directory that holds the CP3KEXTR.bin file. Then enter:

 FTP wscmvs.washington.ibm.com <!-- substitute your systems IP address -->
Enter your userid and password
User (wscmvs.washington.ibm.com:(none)): YourUid
331 Send password please.
Password: YourPw
ftp: binary
220 Representation type is Image
ftp: put CP3KEXTR.bin CP3KEXTR.upload
ftp: quit
f. **In TSO, “Receive” the file**

The CP3KEXTR.bin file from your PC is now in the TSO system. This step reformats it with the RECEIVE command into the CPSTOOLS.JCL dataset.

In ISPF/PDF 6 type: RECEIVE INDSN(CP3KEXTR.UPLOAD)

The command will prompt you for the dataset name.
Type: DA(CPSTOOLS.JCL) SPACE(2,2) CYLINDERS

This will create the CPSTOOLS.JCL dataset (within your high-level qualifier).

2.4 Customize the JCL

In the CPSTOOLS.JCL dataset there is a member already set up for each of the tools. Edit and use the appropriate member as described below.

<table>
<thead>
<tr>
<th>member</th>
<th>used for</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTRALL</td>
<td>zPCR, zBNA, zCP3000</td>
<td>Extracts SMF 14, 15 30, 42, 7x, 89, and 113 records into file(s) that can be loaded into PC for zPCR, zBNA or zCP3000. Includes all options, although some less used may appear as comments.</td>
</tr>
<tr>
<td>EXTRCP3K</td>
<td>zCP3000</td>
<td>Extracts SMF 7x, 89, 113 Records into file(s) that can be loaded to PC for zCP3000. This JCL includes all options, although some less used may appear as comments.</td>
</tr>
<tr>
<td>EXTRZPCR</td>
<td>zPCR</td>
<td>This is simplified JCL for running the Extract to create all of the data that is used by the zPCR tool.</td>
</tr>
<tr>
<td>EXTRZBNA</td>
<td>zBNA</td>
<td>This is simplified JCL for running the Extract to create all of the data that is used by zBNA (z Batch network Analyzer).</td>
</tr>
</tbody>
</table>

a. Change the **JOB** card to meet the standards of your installation.

b. Change the **SMFIN DD** statement to point to your input SMF dataset.

c. Specify the correct prefix in the dataset name for the **EDF001** dataset and (if they are needed) the **PGN001** and **BCU001** datasets. Note: If you are using another dataset it must have a record format of F or FB and an LRECL of 80.

d. **Advanced zCP3000 users:** If you are using the **IOCP** option of the **BCU=AUTO** option specify the correct prefix in the dataset name for the **IOCP001** dataset.
2.5 Setup the Input Parameters

The Extract procedure is flexible and can support a number of variations in processing. These are selected using input parameters you provide via the SYSIN001 DD.

Most of the parameters are optional and default to functional values if not specified. However, the SysId of the system you want to study must be provided.

If you don't know the SysId for the SMF data you can specify a dummy SYSID=XXXX (which won't match anything). When there is no match the program skips its regular processing and instead prints a summary of the contents of the SMF dataset. This includes, among other things, a list of the SysId values found in the data. Put the following parameters (and only these) in the SYSIN001 input stream.

```
//SYSIN001 DD *
ENT='Customer Name'       (substitute a descriptive name)
SYSID=XXXX                (specify a value of 'XXXX')
/*
There is an output example in part 3.7
```

The following input parameters are the most commonly used. Additional parameters and variations are shown in part 3.

These 4 parameters are normally provided. The first 2 are always required:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENT='xxxxxx'</td>
<td>The Enterprise name, specified as a character string in single quotes (50 characters maximum). Imbedded blanks are permitted. Required.</td>
</tr>
<tr>
<td>SYSID=xxxx</td>
<td>Specifies the four-character JES SYSID of the system to be studied. Required Note – do not use quotes with this item.</td>
</tr>
<tr>
<td>BCU=AUTO</td>
<td>Specified to generate a BCU Mapping file. Normally you will include this. If you are interested in FICON Mapping you also want to specify an IOCP001 DD name pointing to the current IOCDS. This will generate a more complete BCUMAP suitable for FICON analysis. For the FICON analysis you should also use BCU=FICONAG and PART= to specify the LPAR partition name.</td>
</tr>
<tr>
<td>PGN=GOAL</td>
<td>Used to generate the Workload Mapping. Also normally included.</td>
</tr>
</tbody>
</table>
The following parameters can be left out and the default for the run will be to process all SMF input data with an Extract reporting interval of 1 hour. Or you can specify the range of SMF data you want to process and adjust the reporting interval.

<table>
<thead>
<tr>
<th>DURATION</th>
<th>Specifies the Extract reporting interval in hours. This parameter defaults to 1 if not provided. The minimum is value is 5 minutes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.g.,</td>
<td>DURATION=1 for one hour (the default)</td>
</tr>
<tr>
<td></td>
<td>DURATION=2 for 2 hours</td>
</tr>
<tr>
<td></td>
<td>DURATION=00:15 for 15 minutes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>Specifies the times (the hours of the day) you want to study. If not specified, all times will be used. Be sure that the duration fits evenly into this time range.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.g.,</td>
<td>TIME=(00-24) to select all hours of the day (the default)</td>
</tr>
<tr>
<td></td>
<td>TIME=(08-11) to select data from the 8th, 9th, and 10th hours.</td>
</tr>
<tr>
<td></td>
<td>You may have multiple TIME= statements. For example, if you are using 2-hour samples you may have TIME=(08-12) and another TIME=(13-17).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>Specifies the days of interest. If it is not specified all dates in the input SMF file will be used. There are several variations of the DATE statement – it can include a single date, a range of dates, for a list of separate dates.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.g.,</td>
<td>DATE=(09/25/15)</td>
</tr>
<tr>
<td></td>
<td>DATE=(09/25/15-09/29/15)</td>
</tr>
<tr>
<td></td>
<td>DATE=(09/25/15,09/26/15,09/27/15,09/28/15,09/29/15)</td>
</tr>
</tbody>
</table>

The RMF interval must fit evenly within the Extract reporting DURATION and the Extract reporting DURATION must fit evenly within the specified TIME period.

See [part 4](#) for an example of the JCL and the input statements.
2.6 Run the Extract

a. Submit the Job

Use the JCL member you just customized and submit the job. This will generate the output EDF file.

The following return codes will be issued:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No messages.</td>
</tr>
<tr>
<td>4</td>
<td>Messages of note have been issued.</td>
</tr>
<tr>
<td>8</td>
<td>Either important data (RMF types) were missing from the file or there is questionable data in some of the intervals (that you may want to exclude).</td>
</tr>
<tr>
<td>12</td>
<td>Something is critically wrong with the parameters, or no data fit within the SYSID and timeframe requested.</td>
</tr>
<tr>
<td>16</td>
<td>Something is drastically wrong and the program failed.</td>
</tr>
<tr>
<td>20</td>
<td>CP3KEXTR couldn't write to the PRINT001 DD.</td>
</tr>
<tr>
<td>225</td>
<td>No data was found that meets the input specification. This could happen if the specified SysId was not present in the SMF input dataset or if the date and time selections did not cover the time periods of the data.</td>
</tr>
</tbody>
</table>

Note: If no data was selected it might be because:

- The specified SysId wasn’t present.
- No records were in the specified date/time range.
- The data is not sorted (add the sort work datasets to the JCL)
- If the data is not sorted you have to specify SORT=YES to get it to sort. You may or may not need sort work datasets based on the size of the input SMF file.

b. Check for Messages

Review the messages produced by the program -- they go into the PRINT001 DD statement and will be with your output JCL.

c. Download the EDF (and optionally the DATA file)

The EDF file will be in the member referenced by the EDF001 DD statement. For zBNA the DATA file will be in the dataset referenced by the DATA001 DD statement.

These files should be downloaded using normal ASCII CRLF protocol. The suggested extension is EDF, so zCP3000 can find it.
3. Program Input Parameters

This section describes the input parameters accepted by the Extract program (CP3KEXTR) through the SYSIN001 dataset. Note that if you are processing more than one LPAR in this Extract run there will be a SYSIN DD statement for each (e.g., SYSIN001, SYSIN002, etc.).

The ENT and SYSID parameters are required for all jobs while the others are used only if needed. The following conventions apply to coding parameters:

- One parameter per line
- Parameter text must begin in column 1
- The text may run up to column 72
- Comment lines are indicated by an asterisk `*' in column 1

You can review a sample of this type of input in part 4.3.

<table>
<thead>
<tr>
<th>Note that any of the Extract input streams may have comment lines. This includes: SYSIN, PGNMAP, BCUMAP or T30MAP. A comment is identified by an asterisk `*' in the first column (causing the remainder of the line to be ignored).</th>
</tr>
</thead>
</table>

3.1 Required Parameters

There are two required parameters that must always be specified in each SYSIN dataset.

ENT=’xxx xxx xxx’

The Enterprise name is specified as a character string in single quotes (up to 50 characters). Imbedded blanks are permitted. Multiple EDF files from different partitions and CECs for the same enterprise should have the same ENT parameter.

SYSID=xxxx

Specify the four-character JES SYSID as it appears in the SMF records. This is used to select only one particular SYSID from the SMF input.

Remember, if you don’t know the SysId you can do a run with just the following two parameters and the program will print a summary of the contents of the SMF dataset showing the SysIds that are present.

```plaintext
//SYSIN001 DD *
ENT='Customer Name' (substitute a descriptive name)
SYSID=XXXX (specify a value of XXXX)
/*
```
3.2 Reporting Interval Parameters

These parameters let you select or exclude certain dates and times. You can also specify the duration of the Extract reporting period.

DATE=(MM/DD/YY)

The specified date or date range will be used to select RMF records. Multiple DATE parameters can appear separately. If no DATE parameter is specified all dates in the input file will be used.

The parameter can be a single date, a list of dates, or a date range as follows:

- `DATE=(MM/DD/YY)`
- `DATE=(MM/DD/YY-MM/DD/YY)`
- `DATE=(MM/DD/YY,MM/DD/YY,MM/DD/YY)`

DURATION=hh

The DURATION value specifies the Extract reporting interval -- the time period in hours the Extract program uses to group the incoming SMF data. One or more RMF intervals will be summarized into each DURATION reporting interval.

If the DURATION is not specified the program uses a default of one hour, DURATION=1.

This parameter can be specified in whole hours or in hours and minutes:

- `DURATION=hh`
- `DURATION=hh:mm`

Remember, the RMF interval must fit evenly within the Extract reporting DURATION and the Extract reporting DURATION must fit evenly in the specified TIME period (next parameter).

For example, if your RMF has a 15-minute interval set your DURATION to 15 minutes or some multiple of 15 minutes. Specifying DURATION=01 (one hour) would evenly include 4 RMF intervals.
TIME=(hh-hh)

This parameter gives a range of hours. SMF data within this range will be accepted as input and data outside of this range will be ignored. The selection begins with the first value and runs up to the second value. Note that it is important that the DURATION of the Extract reporting interval fits evenly in the specified TIME period.

For example, if you specify TIME=(09-11) SMF data from the 9th and 10th hour will be included and would evenly contain a 1 hour reporting DURATION.

Multiple TIME parameters can be specified. The duration value must be specified first.

The time parameter can be given in whole hours or in hours and minutes:

- TIME=(hh-hh)
- TIME=(hh:mm-hh:mm)

The decision whether to include an RMF record is based on a time that represents the midpoint of the RMF interval. For example, if TIME=(09-11) is specified,

- An RMF record for an interval beginning at 10:55 with a duration of 15 minutes would not be included (because the midpoint time is after the 11:00 cutoff).
- A record beginning at 8:55 also with a duration of 15 minutes would be included (because its midpoint time is after 9:00).

With either form be sure that the DURATION fits evenly in this time window.

If you are using the SELECT statement you don’t need to also use the TIME parameter.

If neither TIME nor SELECT is specified the program defaults to TIME=(00-24), i.e., select all times.

SELECT DATE=MM/DD/YY,TIME=HH-HH
EXCLUDE DATE=MM/DD/YY,TIME=HH-HH

These statements may be used to include or to exclude certain periods from analysis.

For example, if you are studying a customer’s prime shift during a week but they are open late on Thursdays, you can add additional hours to the study for Thursday. In addition, if on Tuesday morning there was a hardware failure that made the data from 9-10 invalid you can EXCLUDE that data.

It is also possible to simply look at discrete times. For example, if the study of a week’s data reveals that there are three peak hours it is possible to SELECT only those three hours for study.
3.3 Other Parameters

CECID/CPCID=cccccccc

Lets you specify up to eight characters for the CECID value that is included in the output EDF. If omitted the SYSID will be used for machines in basic mode. For machines in LPAR Mode CPCnnnnnn will contain the 5-digit correct serial number.

NOTE: This only specifies a value for the EDF. It is not a selection item and has no effect on what SMF records are accepted in the run.

NOTE: It is best to let this default and rename the CEC once the data has been loaded into zCP3000.

CPUMOD=cccccccccc

A 10-character CPU model. If this is not specified a table lookup will be used with data in the RMF type 70 record.

PROCESS=YES/NO

This specifies whether you want the program to perform its full SMF processing.

<table>
<thead>
<tr>
<th>NO</th>
<th>The program will accept the input parameters, generate the BCU and/or PGN maps, then stop without further processing. This is used in the case where you want to edit a BCU and/or PGN map before using it.</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>The program will proceed through all the normal processing of the SMF data. This is the default. Note: If you have done manual editing of the BCU or PGN maps be sure to remove the BCU=AUTO and/or PGN=GOAL statements.</td>
</tr>
</tbody>
</table>

RMFINT=nn

Number of RMF intervals to be used when calculating the peak to average ratio. Any consecutive nn intervals will be considered. Default is one.

SORT=YES/NO

Coding YES will cause the program to do an internal sort on only the SMF data required for this study. In most cases the SMF data is already in time sequence and this sort is not required. The default is NO.

If you should see interval starts or durations which are strange or if CP3KEXTR should give you a message to sort the data then a sort is in order.

When using the internal sort the REGION= parameter should be adjusted as high as reasonable. Also, some thought should be given to the size of the sort work datasets.
SAVE=SORT=ALL/SysId

This is used to take an input (presumably tape) dataset and copy it to disk while sorting the data and eliminating duplicate records. The destination is described by the SMFSAVE DD statement.

<table>
<thead>
<tr>
<th>ALL</th>
<th>All records (including every SysId) are written to disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>SysId</td>
<td>Only records for the specified SysId are written to disk</td>
</tr>
</tbody>
</table>

A report of the SysIds encountered, record types and subtypes encountered, and earliest and latest date and times will be written to the SYSPRINT DD statement.

Note that no other processing is permitted with this parameter. If this parameter is specified no other parameters are allowed except TYPES.

SUB30=n,n,n...

This is used with SMF records 30 processing to determine which type 30 subtypes are included in the DATA001 file. The default is SUB30=4,5. This parameter does not apply to the T30MAP processing which always uses type 2 and 3.

TYPES=14,15,30(2,3,4,5),42(6),70(1,2),71(1),72(1,3),73(1),74(1,4,5),75(1),78(1,3),113(1,2)

This parameter defines the records that are to be written to the disk dataset. It can only be specified with SAVE=SORT=. If this statement is omitted the default includes the types and subtypes shown above. Because the statement may exceed the 80 character input line length the record types can be specified as two separate statements (and the content of both will be combined by the program).

If you are not interested in using a particular record type you would include the TYPES statement as shown above but leave out that one type.
3.4 BCU - Parameters

BCU (basic control unit) is a term used in the Extract program to represent a physical I/O control unit -- the “box” that contains the LCUs (logical control units). The BCU map provides a mechanism to combine LCUs that are part of the same physical control unit.

BCU=AUTO/AUTOADD

The BCU=AUTO or AUTOADD option causes the program to create a new BCU Map and write it to the BCU001 dataset. This will combine BCUs that have the same channels. If not specified, an existing BCU map will be used. BCU=AUTO is the typical processing case, but since this is not the default it must be specified.

If IOCP data (IOCDS) is used it will combine BCUs with the same switches and links.

You must have type 74 subtype 1 and type 78 subtype 3 records. If you specify BCU=AUTO and these types aren’t present the run will stop with an error message.

The mapping process is described in part 6.1. (Note that the map will be more complete if 74 subtype 5 records are available). If the IOCPnnn DD statement is found it will also be read to create a more complete BCUMAP.

Note that for shared DASD the BCUID may not be unique. This should be adjusted to be the same value on all systems.

<table>
<thead>
<tr>
<th>Specification</th>
<th>BCUID in EDF</th>
</tr>
</thead>
</table>
| **BCU=AUTO** | The BCU manufacturer (**IBM**) plus a hyphen (-) plus the 5-digit device serial number.
If no VOLSER is found the name will default to 'L' plus the LCU number. |
| **BCU=AUTOADD** | 'A' concatenated with the 4-digit hex address of the lowest numbered device on this BCU. |
BCU=NO/DASD/TAPE/OTHER/ALL

These choices are used to request processing of an existing BCU map that will be read in from the BCU001 DD (i.e., you did not specify BCU=AUTO). This maps the volume data to BCUs by SYSID and address. Default is ALL.

You can specify the type of the BCU entries you want to process as follows:

<table>
<thead>
<tr>
<th>NO</th>
<th>Skip BCU processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>DASD</td>
<td>Only process the BCU macros in the BCU map</td>
</tr>
<tr>
<td>TAPE</td>
<td>Only process the BCUT macros in the BCU map</td>
</tr>
<tr>
<td>OTHER</td>
<td>Only process the BCUO macros in the BCU map</td>
</tr>
<tr>
<td>ALL</td>
<td>Process BCUD, BCUT, and BCUO</td>
</tr>
<tr>
<td>DASD,TAPE</td>
<td>Process both DASD and TAPE. (Or any combination of DASD, TAPE, or OTHER separated by commas)</td>
</tr>
</tbody>
</table>

BCU=LCU/COM

You can specify BCU=COM as an additional option for BCU=AUTO to choose an alternate combining strategy. Put this specification on a separate line either before or after the BCU=AUTO statement. The processing distinction is:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Method for Combining</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCU=LCU (default)</td>
<td>Combine different LCUs that the program can determine are part of the same physical control unit.</td>
</tr>
</tbody>
</table>
| BCU=COM | Combine different control units that share the same set of paths (i.e., the same CHPIDS and links).
 ESCON control units that share the same directors are combined.
 Control units on copper channels where the control units are daisy chained are combined. |

If you will be using zCP3000 to analyze shared DASD, it will expect that a given BCU will have the same BCUID from each system. This will more likely happen automatically with BCU=AUTO than with BCU=AUTOADD.
BCU Summary

The BCU map can be generated automatically and used in the same run (case 1 below) or it can be generated, manually edited, and then used in subsequent processing (2 & 3 below). These are the parameters needed to handle these cases:

<table>
<thead>
<tr>
<th>Case</th>
<th>Specify these parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fully Automatic</td>
</tr>
<tr>
<td></td>
<td>Generate the map</td>
</tr>
<tr>
<td></td>
<td>and then use it</td>
</tr>
<tr>
<td></td>
<td>BCU=AUTO</td>
</tr>
<tr>
<td></td>
<td>PROCESS=YES</td>
</tr>
<tr>
<td></td>
<td>BCU=ALL</td>
</tr>
<tr>
<td></td>
<td>to generate the BCU map</td>
</tr>
<tr>
<td></td>
<td>generate the map and then</td>
</tr>
<tr>
<td></td>
<td>do the normal SMF processing</td>
</tr>
<tr>
<td></td>
<td>use everything in the new map</td>
</tr>
<tr>
<td>2</td>
<td>Generate a map</td>
</tr>
<tr>
<td></td>
<td>to manually edit</td>
</tr>
<tr>
<td></td>
<td>BCU=AUTO</td>
</tr>
<tr>
<td></td>
<td>PROCESS=NO</td>
</tr>
<tr>
<td></td>
<td>to generate the BCU map</td>
</tr>
<tr>
<td></td>
<td>to stop after making the map</td>
</tr>
<tr>
<td>3</td>
<td>Use existing map</td>
</tr>
<tr>
<td></td>
<td>after editing</td>
</tr>
<tr>
<td></td>
<td>omit BCU=AUTO</td>
</tr>
<tr>
<td></td>
<td>don’t make a new map</td>
</tr>
<tr>
<td></td>
<td>(it would write over the edited one)</td>
</tr>
<tr>
<td></td>
<td>PROCESS=YES</td>
</tr>
<tr>
<td></td>
<td>do the normal SMF processing</td>
</tr>
<tr>
<td></td>
<td>and use the edited BCU map</td>
</tr>
<tr>
<td></td>
<td>BCU=ALL</td>
</tr>
<tr>
<td></td>
<td>use everything in the map</td>
</tr>
</tbody>
</table>

BCU=FICONAG

There may be cases in FICON studies where it is desired that parts of physical boxes not be combined. These cases are when different groups of LCUs connect to different groups of CHPIDs. If you specify BCU=FICONAG these LCU groups will be kept separate in the BCUMAP.

PART=nnnnnnnn

This parameter specifies the partition name which is used to process the IOCP file in an LPAR environment. It is only used with BCU=AUTO when an IOCPnnn DD statement is provided. The default is the SYSID specification.

SHOWACT=ALL/NONE

Specifying NONE will suppress all actuator data. zCP3000 does not yet support files produced by using a value here but SHOWACT=.001 will cause only those actuators which have I/O rates of .001 or greater to be output. NOT YET TO BE USED WITH zCP3000. <>
3.5 PGN - Workload Parameters

zCP3000 users frequently want to combine service classes to a smaller number for executive reporting. The Extract program provides a facility to do this. It can also, probably more simply, be done once in zCP3000.

The PGN Mapping mechanism provides a way to combine service classes for reporting. The program does this automatically and you can make manual adjustments if needed. However, the zCP3000 application handles this so manual adjustments are usually not necessary.

The PGN001 DD statement must be specified with the JCL to process workload data. If it is not present, there will be no PGN processing regardless of the input parameters. See also part 6.2

PGN=GOAL

This option asks the program to automatically build a PGN map into the PGN001 DD file. It will scan the SMF data, read the SMF Type 72 subtype 3 records, do the combining, and write the map. If record type 72 subtype 3 data is not present the program will issue an error message and terminate the run.

Normally you include this parameter. But when you leave it out the program uses an existing PGN map, giving you the opportunity to make manual adjustments. See also part 6.2c.

Case 1 below is where the PGN map is generated automatically and then used in the same run. Case 2 & 3 below is where the map is generated, manually edited, and then used in later processing. These are the parameters needed to handle these cases:

<table>
<thead>
<tr>
<th>Case</th>
<th>Specify these parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fully Automatic</td>
</tr>
<tr>
<td></td>
<td>Generate the map and then use it</td>
</tr>
<tr>
<td></td>
<td>PGN=GOAL</td>
</tr>
<tr>
<td></td>
<td>PROCESS=YES</td>
</tr>
<tr>
<td></td>
<td>generate the PGN map</td>
</tr>
<tr>
<td></td>
<td>do the normal SMF processing and use the new PGN map</td>
</tr>
<tr>
<td>2</td>
<td>Generate a map to manually edit</td>
</tr>
<tr>
<td></td>
<td>PGN=GOAL</td>
</tr>
<tr>
<td></td>
<td>PROCESS=NO</td>
</tr>
<tr>
<td></td>
<td>generate the PGN map</td>
</tr>
<tr>
<td></td>
<td>stop after making the map</td>
</tr>
<tr>
<td>3</td>
<td>Use existing map after editing</td>
</tr>
<tr>
<td></td>
<td>omit PGN=GOAL</td>
</tr>
<tr>
<td></td>
<td>PROCESS=YES</td>
</tr>
<tr>
<td></td>
<td>don’t make a new map (it would write over the edited one)</td>
</tr>
<tr>
<td></td>
<td>do the normal SMF processing and use the new PGN map</td>
</tr>
</tbody>
</table>
TYPE42=YES/NO

This option will build records for each of the workloads describing the dataset usage by business unit. This data will be built from type 42 subtype 6 records. The default is YES.

There are some assumptions for the type 42 records processing.

- A PGNMAP was supplied.
- BCU=DASD or ALL was specified.
- SHOWACT=NONE was not specified

3.6 Convert Tape to Disk

The Extract Program has a facility to copy an input dataset (usually from tape), sort the records removing duplicates, and write them to an output dataset (usually on disk). The destination is described by the SMFSAVE DD statement.

As part of this processing a report will be written to the PRINT001 DD statement which lists:

- All SYSIDs encountered
- For each SYSID, the record types and subtypes encountered
- For each record type and subtype the earliest and latest time and date

No other processing can take place in a tape to disk run.

The input dataset must be allocated to the SMFIN DD statement. The output (disk) dataset will be written to the SMFSAVE DD statement. Give the job as much region and SORTWKnn’s as you can.

SAVE=SORT=ALL

SAVE=SORT=SysId

No other statements except for TYPES described below are permitted with the SAVE=SORT option.

| =ALL | All records (including every SysId) are written to disk. Use this if you have data with multiple SYSIDs and you would like to keep the data for distinct SYSIDs separate. |
| =SysId | Only records for the specified SYSID are written to disk |

For example, if you received a tape with data for SYSA, SYSB and SYSC, you would need to make three separate passes:

- one with SAVE=SORT=SYSA producing the first SMFSAVE dataset, then
- another pass with SAVE=SORT=SYSB producing the 2nd different SMFSAVE dataset
- and a final pass with SAVE=SORT=SYSC
By default the program will collect and sort the following record types:

```
TYPES=14,15,30(2,3,4,5),42(6),70(1,2),71(1),72(3),73(1),
TYPES=74(1,4,5,8,9,10),75(1),78(1,3),113(1,2)
```

You may change this list adding or subtracting record types. This is the list of all records that the Extract Program can process so if you are not interested in using one particular record type you would include the TYPES statement shown above but leave out that one type.

Because the statement may exceed the 80 character input line length the record types can be specified as two separate statements (and the content of both will be combined by the program).

For example, if you are pressed for space and know that you will not be processing the type 30 records you could place this statement in the input stream and remove the “30(2,3,4,5)” part. Then the output dataset would not contain type 30 records. This is the only other statement permitted with the SAVE=SORT= parameter.
3.7 Summary Output

If you use a SysId that doesn’t match anything in the incoming SMF data the program skips its regular processing and instead prints a summary of the contents of the SMF dataset. (Note that you can force this by deliberately specifying SYSID=xxxx). Here is an example of that output:

```
******* zCP3000 EXTRACT PROGRAM 10/04/18 V3.86 ******
RUNDATE=10/04/18 RUNTIME=15:31:28.98
SMFDSN=XXXXXX.SMF234.TEST
------ PROCESSING SYSIN001 DATASET ---->
ENT='Customer Name'
SYSID=XXXX
<------------- SYSIN001 DATASET PROCESSED
CP2KEXT: NO BCUMAP PROCESSING REQUESTED
CP2KPR10: NO PGNMAP PROCESSING REQUESTED
CP2KT30M: NO T30M001 PROCESSING REQUESTED
CP3KEXT: NO DATA FOUND TO PROCESS
CP2KUTIL: CEC 2097-742 S/N (LAST 4 DIGITS): 9F30
LPAR AQFT SYSID AQFT GMT OFFSET -4:00
LPAR VICTEST
LPAR VMTOOL1
LPAR AQCF1
LPAR AQHO
LPAR AQLINX
LPAR HDCF4
LPAR GDLVM7
LPAR LNXVM14
LPAR POKVMXA1
LPAR PHYSICAL
CP2KUTIL SYSID: AQFT MVS: ZV010900 RMF: V7R1M9
CP2KUTIL RMF DURATION: 30 MINUTES
CP2KUTIL: GOAL MODE DATA. POLICY PRIMSHFT DESC PLPSC Production policy
   TYPE 002    1 RECORDS FROM: 06/23/18 09:10 - 06/23/18 09:10
   TYPE 003    1 RECORDS FROM: 06/23/18 09:26 - 06/23/18 09:26
   TYPE 023    10 RECORDS FROM: 06/20/18 09:17 - 06/20/18 13:47
   TYPE 070 01 10 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 070 02 10 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 071 01 10 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 072 03 360 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 072 04 10 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 073 01 10 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 074 01 370 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 074 02 10 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 074 03 10 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 074 04 20 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 074 05 1390 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 074 06 10 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 075 01 70 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 076 01 120 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 077 01 10 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 078 02 10 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
   TYPE 078 03 20 RECORDS FROM: 06/20/18 09:00 - 06/20/18 13:30
```
4. JCL

Modify the sample JCL in this document to meet the requirements of your installation.

4.1 DD Statement Summary

<table>
<thead>
<tr>
<th>DD Name</th>
<th>Purpose</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSIN001</td>
<td>Input - parameters to the Extract program.</td>
<td>Always</td>
</tr>
<tr>
<td>SMFIN</td>
<td>Input - SMF dataset</td>
<td>Always</td>
</tr>
<tr>
<td>EDF001</td>
<td>Output - EDF file. Logical record length is 80</td>
<td>Always</td>
</tr>
<tr>
<td>PRINT001</td>
<td>Output - CP3KEXTR messages</td>
<td>Always</td>
</tr>
<tr>
<td>BCU001</td>
<td>The BCU mapping. LRECL is 80.</td>
<td></td>
</tr>
<tr>
<td>PGN001</td>
<td>The service class mapping file. LRECL is 80.</td>
<td></td>
</tr>
<tr>
<td>DATA001</td>
<td>Dataset for extracts of type 30, 42, 14, & 15 records</td>
<td>for zBNA</td>
</tr>
<tr>
<td>T30M001</td>
<td>The workload decomposition group mapping to be used with type 30 record processing. LRECL is 80.</td>
<td></td>
</tr>
<tr>
<td>IOCP001</td>
<td>The IOCP dataset, also known as the IOCDS (I/O Control Dataset). LRECL is 80.</td>
<td></td>
</tr>
<tr>
<td>SYSLOUT</td>
<td>LOADER messages</td>
<td></td>
</tr>
<tr>
<td>SORTMSGS</td>
<td>Sort Messages</td>
<td>if SORT=YES</td>
</tr>
<tr>
<td>SORTWK0x</td>
<td>Sort Work Space</td>
<td>if SORT=YES</td>
</tr>
<tr>
<td>SMFSAVE</td>
<td>SMF Records to be saved for analysis in future runs</td>
<td>if SAVE= specified</td>
</tr>
</tbody>
</table>
4.2 Return Codes

These are the Extract Program return codes. Non-zero return codes can be found in the SYSOUT files along with the message generating the non-zero return code.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No notifications</td>
</tr>
<tr>
<td>4</td>
<td>Messages of note have been issued. Check the message, but usually the EDF output is OK.</td>
</tr>
<tr>
<td>8</td>
<td>A warning that messages have been issued that you should review. Either important SMF/RMF record types were missing from the input file or there is questionable data in some of the intervals (that you may want to exclude). EDF output will be usable but adjustments may produce better results.</td>
</tr>
<tr>
<td>12</td>
<td>Something is critically wrong with the parameters or no data fit within the SYSID and timeframe requested.</td>
</tr>
<tr>
<td>16</td>
<td>Something is drastically wrong and this run has failed.</td>
</tr>
<tr>
<td>20</td>
<td>CP3KEXTR couldn't write to the PRINT001 DD.</td>
</tr>
<tr>
<td>225</td>
<td>No data was found that meets the input specification.</td>
</tr>
</tbody>
</table>
4.3 JCL to Run the Extract for zCP3000

The JCL is dependent upon the options selected. The following sample is the EXTRACT member that is shipped in the package. It builds the PGNMAP and BCUMAP files. Follow the directions in part 2 to create the EDFI and Disk Magic files given below.

```jcl
//PATTRSN JOB (????,????),MSGLEVEL=1,MSGCLASS=O,NOTIFY=????????
//* DATA EXTRACTION PROGRAM FOR ZCP3000
//* EXTR EXEC PGM=LOADER
//PRINT001 DD SYSOUT=* 
//SMFIN DD DISP=SHR,DSN=PATTRSN.RMF.CTS51T
//EDF001 DD DISP=SHR,DSN=PATTRSN.CPSTOOLS.JCL(EDFI)
//PGN001 DD DISP=SHR,DSN=PATTRSN.CPSTOOLS.JCL(PGNMAP)
//BCU001 DD DISP=SHR,DSN=PATTRSN.CPSTOOLS.JCL(BCUMAP)
//IPS001 DD DSN=SYS1.PARMLIB(IEAIPS00),DISP=SHR
//* IOCP001 DD DISP=SHR,DSN=PATTRSN.CPSTOOLS.JCL(IOCP)
//* MAGIC001 DD DISP=SHR,DSN=PATTRSN.CPSTOOLS.JCL(MAGIC)
//* SORTMSGS DD SYSOUT=* 
//* SYSPRT DD SYSPRT=* 
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(200)) 
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(200)) 
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(200)) 
//SORTWK04 DD UNIT=SYSDA,SPACE=(CYL,(200)) 
//* # OUTPUT DATASET FOR TYPE30 RECORDS
//* NOTE: DCB INFORMATION FOR THESE DATASETS IS SUBJECT TO CHANGE.
//* SO IT IS BEST TO LET THE PROGRAM ALLOCATE THEM.
//* DATA001 DD SPACE=(CYL,(20,10)),RLSE,DISP=(,CATLG),UNIT=SYSDA,
//* DSN=PATTRSN.TYPE30.DATA 
//* # OUTPUT DATASET FOR SAVE= PARAMETER (SAVE CP3K'S SMF RECORDS)
//* SMFSAVE DD SPACE=(CYL,(20,10)),RLSE,DISP=(,CATLG),UNIT=SYSDA,
//* BLKSIZE=8192,DSN=PATTRSN.SMF.SAVE 
//* # OPTIONAL USER DUMP DATASET
//* SYSUDUMP DD SYSOUT=* 
//* SYSIN001 DD * 
ENT='YOUR COMPANY'        YOUR COMPANY NAME 
SYSID=AQFT                SMF SYSID
DURATION=01:00            DURATION FOR SUMMARY SAMPLES 
* DURATION MUST BE A MULTIPLE OF RMF INTERVAL 
*T=(00:00-24:00)           CONTINUOUS PERIOD OF INTEREST 
*DATE=(08/05/09-08/12/09) CONTINUOUS DAYS 
PGN=GOAL GENERATE PGNMAP 
BCU=AUTO GENERATE BCUMAP 
*SHOWACT=NONE              SHOWACT=NONE REDUCES OUTPUT SIZE. 
SORT=YES                  IF RECORDS ARE IN SORTED ORDER 
* OMITTING SORT=YES WILL SPEED THINGS UP. 
/*
//* MESSAGES FROM THE MVS LOADER
//* SYSLIN DD DISP=SHR,DSN=PATTRSN.CPSTOOLS.JCL(ZOBJEXTR)
```
4.4 JCL to Run the Extract for zPCR

The JCL is dependent upon the options selected. The following sample is the EXTRSMALL member that is shipped in the package. It builds the PGNMAP and BCUMAP files. Follow the directions in part 2 to create the EDFI files given below.

```jcl
//EXTRSM1L JOB (????,????),MSGLEVEL=1,MSGCLASS=0,NOTIFY=???????,
  // REGION=64M
  //*
  //* LICENSED MATERIALS - PROPERTY OF IBM
  //* DATA EXTRACTION PROGRAM FOR THE ZCP3000 TOOL
  //* COPYRIGHT IBM CORP. 1986, 2010 ALL RIGHTS RESERVED.
  //* US GOVERNMENT USERS RESTRICTED RIGHTS - USE,
  //* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP
  //* SCHEDULE CONTRACT WITH IBM CORP.
  //*
  //*
  //* THIS IS JCL TO RUN THE IBM EXTRACT PROGRAM FOR ZCP3000
  //* TO PRODUCE AN ABBREVIATED OUTPUT SUITABLE FOR THE ZPCR
  //* TOOL.
  //* SEE THE USER'S GUIDE FOR A DESCRIPTION OF
  //* PARAMETERS AND DD STATEMENTS
  //*
  //*
  //* IBM EXTERNAL CUSTOMERS FIND THE USER'S GUIDE AT
  //* HTTP://WWW-03.IBM.COM/SUPPORT/TECHDOCS/ATMSASTR.NSF/WEBINDEX/PRS1381
  //*
  //EXTR EXEC PGM=LOADER
 //* PRINT DATA SET FOR MESSAGES FROM YOUR RUN
  //PRINT001 DD SYSOUT=*
 //* INPUT SMF DATASET - REQUIRED 70, 113 OPTIONAL 74
  //SMFIN DD DISP=SHR,DSN=CUSTMR.SMF.DATASET
 //* DATASET FOR OUTPUT FILE - REQUIRED
  //EDF001 DD DISP=SHR,DSN=CUSTMR.CPSTOOLS.JCL(EDFISM)
 //* WORK DATASET FOR AUTO BCU MAP (DASD I/O RATES)
 //* COMMENT THIS DD IF YOU DO NOT HAVE SMF 74S.
  //BCU001 DD DISP=SHR,DSN=CUSTMR.CPSTOOLS.JCL(BCUMAPSM)
 //* DDS FOR OPTIONAL INTERNAL SORT OF SMF RECORDS
 //* *
  //SORTMSGS DD SYSOUT=* 
  //SYSOUT DD SYSOUT=* 
  //SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(200))
  //SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(200))
  //SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(200))
  //SORTWK04 DD UNIT=SYSDA,SPACE=(CYL,(200))
  //* # OPTIONAL USER DUMP DATASET
  //SYSUDUMP DD SYSOUT=* 
```
//SYSIN001 DD *
ENT='CUSTOMER DATA' YOUR COMPANY NAME (REQUIRED)
SYSID=SYSD SMF SYSID (REQUIRED)
*
DURATION=01:00 DURATION FOR SUMMARY SAMPLES. DURATION
* MUST BE A MULTIPLE OF THE RMF INTERVAL
*
BCU=AUTO PROCESS THE 74 RECORDS.
* IF YOU DO NOT HAVE 74 RECORDS
* REMOVE THIS STATEMENT.
*
SORT=YES IF SMF RECORDS ARE ALREADY IN SORTED ORDER
* OMITTING SORT=YES WILL SPEED THINGS UP.
*
*TIME=(00:00-24:00) DEFAULT IS TO COLLECT FOR ALL DATA IN INPUT
*DATE=(07/16/10) FILE. USE THESE PARAMETERS TO REDUCE THE
* PERIOD OF STUDY.
/*
//********* MESSAGES FROM THE MVS LOADER
//SYSLOUT DD SYSOUT=*
//********* THE OBJECT MODULE OF THE PROGRAM
//SYSLIN DD DISP=SHR,DSN=PATTRSN.CPSTOOLS.JCL(ZOBJEXTR)
4.5 JCL to Run the Extract for zBNA

The JCL is dependent upon the options selected. The following sample is the EXTRZBNA member shipped in the package. It builds the PGNMAP. The highlighted fields must be modified as needed for your installation. Follow the directions in part 2 to create the EDF and DATA files given below.

```plaintext
//VSPENCE1 JOB (????,????),MSGLEVEL=1,MSGCLASS=O,NOTIFY=???????,
// REGION=64M
//*
//* LICENSED MATERIALS - PROPERTY OF IBM
//* DATA EXTRACTION PROGRAM FOR THE ZCP3000 TOOL
//* COPYRIGHT IBM CORP. 1986, 2016 ALL RIGHTS RESERVED.
//* US GOVERNMENT USERS RESTRICTED RIGHTS - USE,
//* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP
//* SCHEDULE CONTRACT WITH IBM CORP.
//*
//* NOTE: THIS JCL IS FOR RELEASE 2 AND LATER OF ZBNA.
//* IF YOU ARE EXTRACTING FOR THE OLDER RELEASE 1
//* (NOT RECOMMENDED), PLEASE USE THE MEMBER EXTRZBR1
//*
//* THIS IS JCL TO RUN THE IBM EXTRACT PROGRAM FOR ZCP3000
//* TO PRODUCE AN ABBREVIATED OUTPUT SUITABLE FOR THE ZBNA TOOL.
//* SEE THE USER'S GUIDE FOR A DESCRIPTION OF
//* PARAMETERS AND DD STATEMENTS
//*
//* IBM EXTERNAL CUSTOMERS FIND THE USER'S GUIDE AT
//* HTTP://WWW-03.IBM.COM/SUPPORT/TECHDOCS/ATSMASTR.NSF/WEBINDEX/PRS1381
//*
//* EXEC  PGM=IEFBR14
//DD1       DD   DSN=CUSTMER.CPSTOOLS.SMFDAT,DISP=(MOD,DELETE),
//       SPACE=(TRK,(1)),UNIT=SYSDA
//DD2       DD   DSN=CUSTMER.CPSTOOLS.RMFDAT,DISP=(MOD,DELETE),
//       SPACE=(TRK,(1)),UNIT=SYSDA
//*
//EXTR     EXEC  PGM=LOADER
//* PRINT DATA SET FOR MESSAGES FROM YOUR RUN
//PRINT001  DD   SYSOUT=*               Output EDF goes to zBNA
//* INPUT SMF DATASET - REQUIRED TYPE 70, 72, 113
//SMFIN    DD   DISP=SHR,DSN=CUSTMER.SMF.DATASET
//* DATASET FOR OUTPUT FILE - REQUIRED
//* EDF001   DD   DSN=CUSTMER.CPSTOOLS.RMFDAT,DISP=(,CATLG),
//       UNIT=SYSDA,SPACE=(CYL,(5,1),RLSE),LRECL=80,RECFM=FB
//* TYPE 30 EXTRACT DATA
//* DATA001  DD   DSN=CUSTMER.CPSTOOLS.SMFDAT,DISP=(,CATLG),
//       UNIT=SYSDA,SPACE=(CYL,(50,50),RLSE)
```

Output DATA file goes to zBNA
// * PGNMAP DATA
// *
// * PGN001 DD DSN=CUSTMR.CPSTOOLS.JCL(PGNMAP),DISP=SHR
// * DDS FOR OPTIONAL INTERNAL SORT OF SMF RECORDS
// *SORTMSG DD SYSOUT=*
// *SOUT DD SYSOUT=*
// *SORTW01 DD UNIT=SYSDA,SPACE=(CYL,(200))
// *SORTW02 DD UNIT=SYSDA,SPACE=(CYL,(200))
// *SORTW03 DD UNIT=SYSDA,SPACE=(CYL,(200))
// *SORTW04 DD UNIT=SYSDA,SPACE=(CYL,(200))
// * # OPTIONAL USER DUMP DATASET
// *SYSDUMP DD SYSOUT=*
// *SYSD01 DD

*ENT='CUSTOMER DATA' YOUR COMPANY NAME (REQUIRED)
*SYSD=SYSD SMF SYSID (REQUIRED)
*DURATION=01:00 HH:MM DURATION FOR SUMMARY SAMPLES. DURATION
* MUST BE A MULTIPLE OF THE RMF INTERVAL
*PGN=GOAL CREATE A PGNMAP AND GATHER WORKLOAD DATA
*SORT=YES IF SMF RECORDS ARE ALREADY IN SORTED ORDER
* OMITTING SORT=YES WILL SPEED THINGS UP.
*TIME=(00:00-24:00) DEFAULT IS TO COLLECT FOR ALL DATA IN INPUT
*DATE=(07/16/15) FILE. USE THESE PARAMETERS TO REDUCE THE
* PERIOD OF STUDY.
*/
// * MESSAGES FROM THE MVS LOADER
// *SYSLUT DD SYSOUT=*
// *THE OBJECT MODULE OF THE PROGRAM
// *SYSLIN DD DISP=SHR,DSN=CUSTMR.CPSTOOLS.JCL(ZOBJEXTR)

Creates this DS and writes I/O data
Be sure this SYSID is in the data set defined in //SMFIN above
Points to the DS containing the ZOBJEXTR member
4.6 JCL for SORT

This JCL is required to run RMF Post Processor. The MODS= statement is required only for
the post processor.

```clike
//WICKSS JOB (????,????),MSGLEVEL=1,MSGCLASS=0,NOTIFY=WICKS, // REGION=4000K
//SORT EXEC PGM=ICEMAN
//SYSOUT DD SYSOUT=*  //SYSPRINT DD SYSOUT=*  //SORTMSG DD SYSOUT=*  //*
//SYSLMOD DD UNIT=SYSDA,SPACE=(3600,(20,20,1))  //SYSLIN DD UNIT=SYSDA,SPACE=(80,(10,10))  //SORTLIB DD DSNAME=SYS1.SORTLIB,DISP=SHR  //SYSUT1 DD UNIT=(SYSDA,SEP=(SORTLIB,SYSLMOD,SYSLIN)), X // SPACE=(1000,(60,20))  //*
//SORTIN DD DISP=SHR,DSN=SYS1.MANDATA  //SORTOUT DD DISP=OLD,DSN=WICKS.RMF.CT51  //SORTWK01 DD DSN=&&SORT1,SPACE=(CYL,(125,125)),UNIT=SYSDA  //SORTWK02 DD DSN=&&SORT1,SPACE=(CYL,(125,125)),UNIT=SYSDA  //*
//SYSSIN DD *  SORT FIELDS=(11,4,CH,A, 7,4,BI,A, 6,1,BI,A), //quals, FILSZ=E400000 MODS E15=(ERBPPE15,500),E35=(ERBPPE35,500) /*
4.7 JCL to Create Multiple Output Files in One Run

The program has the ability to create multiple output EDF files from a single pass of the SMF input data. For example, you could create an EDF for prime shift, second shift, and all shifts with a single pass of the data, creating three EDF files with different time parameters in a single run.

To do this you will use two different groups of DD statements:

- DD statements used for all “subruns”
- DD statements specific to a particular subrun.

An example of the JCL to accomplish this task is on the next page.

4.7a DDs used for all “subruns”

These are specified once and apply to all subruns.

<table>
<thead>
<tr>
<th>DD Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SORTMSGS</td>
<td>Sort Messages. Required for SORT=YES</td>
</tr>
<tr>
<td>SORTWK0x</td>
<td>Sort Work Space. May be required for SORT=YES</td>
</tr>
<tr>
<td>SMFIN</td>
<td>This is the input SMF dataset. All subruns will process this same data.</td>
</tr>
<tr>
<td>SMFSAVE</td>
<td>SMF Records to be saved for analysis in future runs. Required if SAVE=SORT= is specified</td>
</tr>
<tr>
<td>SYSLOUT</td>
<td>LOADER messages</td>
</tr>
</tbody>
</table>

4.7b DDs Specific to a Particular Subrun

These DD statements are associated with each separate subrun. Each DD name ends in a three-digit number the program uses to correlate them. I.e., all the DD statements related to subrun 1 end in “001”, the ones for subrun 2 end in “002”, etc.

<table>
<thead>
<tr>
<th>DD Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSIN001</td>
<td>Input parameters to the Extract program for a subrun</td>
</tr>
<tr>
<td>EDF001</td>
<td>Is the EDF output file. Logical record length is 80</td>
</tr>
<tr>
<td>PRINT001</td>
<td>CP3KEXTR messages</td>
</tr>
<tr>
<td>BCU001</td>
<td>The BCU mapping. LRECL is 80.</td>
</tr>
<tr>
<td>PGN001</td>
<td>The service class mapping file. LRECL is 80.</td>
</tr>
<tr>
<td>DATA001</td>
<td>Dataset for extracts of type 30, 42, 14, &amp; 15 records</td>
</tr>
<tr>
<td>T30M001</td>
<td>The workload decomposition group mapping to be used with type 30 record processing. LRECL is 80.</td>
</tr>
<tr>
<td>IOCP001</td>
<td>The IOCP dataset. LRECL is 80.</td>
</tr>
</tbody>
</table>

The program will load the parameters for all of your subruns. If errors are found in any of the inputs the run will stop. If all parameters are successfully processed the PGNMAPs and
BCUMAPs will be generated and processed. Assuming no errors are found in this stage the program will continue.

The input parameters will apply only to the “subrun” in which they are specified with one exception -- “SORT=YES” will cause the input to be sorted for all “subruns”.

### 4.7c JCL for Multiple Outputs

This is an example of a job with 3 subruns.

```jcl
//VSIPASS JOB (????,????),MSGLEVEL=1,MSGCLASS=0,NOTIFY=VSPENCE,
// REGION=64M
//* THIS IS JCL TO RUN THE EXTRACT PROGRAM
//* TO PRODUCE MULTIPLE EDF OUTPUT FILES
//* IN A SINGLE RUN
//*-----------------
//EXTR EXEC PGM=LOADER
//* PRINT DATA SETS FOR MESSAGES FROM YOUR RUN
//PRINT001 DD SYSOUT=*
//PRINT002 DD SYSOUT=*
//PRINT003 DD SYSOUT=*
//* INPUT SMF DATASET
//SMFIN DD DISP=SHR,DSN=A11PTG.ACXIOM.SMF
//*-----------------
//EDF001 DD DISP=SHR,DSN=VSPENCE.CPSTOOLS.JCL(EDF1S)
//EDF002 DD DISP=SHR,DSN=VSPENCE.CPSTOOLS.JCL(EDF2S)
//EDF003 DD DISP=SHR,DSN=VSPENCE.CPSTOOLS.JCL(EDF3S)
//*-----------------
//PGN001 DD DISP=SHR,DSN=VSPENCE.CPSTOOLS.JCL(PGNEDF1S)
//PGN002 DD DISP=SHR,DSN=VSPENCE.CPSTOOLS.JCL(PGNEDF2S)
//PGN003 DD DISP=SHR,DSN=VSPENCE.CPSTOOLS.JCL(PGNEDF3S)
//*-----------------
//BCU001 DD DISP=SHR,DSN=VSPENCE.CPSTOOLS.JCL(BCUEDF1S)
//BCU002 DD DISP=SHR,DSN=VSPENCE.CPSTOOLS.JCL(BCUEDF2S)
//BCU003 DD DISP=SHR,DSN=VSPENCE.CPSTOOLS.JCL(BCUEDF3S)
//*-----------------
//IPS001 DD DSN=SYS1.PARMLIB(IEAIPS00),DISP=SHR
//* INPUT DATASET FOR IOCP PROCESSING (FICON)
//IOCP001 DD DISP=SHR,DSN=PATTRSN.CPSTOOLS.JCL(IOCP)
//*-----------------
//SORTMSGS DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//*-----------------
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(200))
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(200))
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(200))
//SORTWK04 DD UNIT=SYSDA,SPACE=(CYL,(200))
```

One EDF output for each subrun
// *-----------------------------------------------------------------
// * OUTPUT DATASET FOR TYPE30 RECORDS
// * NOTE: DCB INFORMATION FOR THESE DATASETS IS SUBJECT TO CHANGE.
// * SO IT IS BEST TO LET THE PROGRAM ALLOCATE THEM.
// * # OUTPUT DATASET FOR TYPE30 RECORDS
// * DSN=PATTRSN.TYPE30.DATA
// *-----------------------------------------------------------------
// SYSDUMP DD SYSDUMP DD SYSDUMP DD

// SYSIN001 DD *
ENT=SHIFT 1 DATA IN A SINGLE PASS
### YOUR COMPANY NAME
SYSID=Z390
### JES SYSID
DURATION=00:15
RMF/SMF DURATION FOR GATHER
*
DURATION >= RMF INTERVAL
TIME=(08:00-15:00)
CONTINUOUS PERIOD OF INTEREST
DATE=(03/28/10-04/03/10)
### CONTINUOUS DAYS
PGN=GOAL
BCU=AUTO
*SHOWACT=NONE
SHOWACT=NONE REDUCES OUTPUT SIZE.
* SORT=NO
* OMITTING SORT=YES WILL SPEED THINGS UP.
PROCESS=YES
/*

// SYSIN002 DD *
ENT=SHIFT 2 DATA IN A SINGLE PASS
### YOUR COMPANY NAME
SYSID=Q390
### JES SYSID
DURATION=00:15
RMF/SMF DURATION FOR GATHER
*
DURATION >= RMF INTERVAL
TIME=(15:00-23:00)
CONTINUOUS PERIOD OF INTEREST
DATE=(03/28/10-04/03/10)
### CONTINUOUS DAYS
PGN=GOAL
BCU=AUTO
*SHOWACT=NONE
SHOWACT=NONE REDUCES OUTPUT SIZE.
* SORT=NO
* OMITTING SORT=YES WILL SPEED THINGS UP.
PROCESS=YES
/*

// SYSIN003 DD *
ENT=SHIFT 3 DATA IN A SINGLE PASS
### YOUR COMPANY NAME
SYSID=F390
### JES SYSID
DURATION=00:15
RMF/SMF DURATION FOR GATHER
*
DURATION >= RMF INTERVAL
TIME=(00:00-08:00)
CONTINUOUS PERIOD OF INTEREST
DATE=(03/28/10-04/03/10)
### CONTINUOUS DAYS
PGN=GOAL
BCU=AUTO
*SHOWACT=NONE
SHOWACT=NONE REDUCES OUTPUT SIZE.
* SORT=NO
* OMITTING SORT=YES WILL SPEED THINGS UP.
PROCESS=YES
/*

// SYSOUT DD SYSOUT=* // SYSOUT DD SYSOUT=* // SYSOUT DD SYSOUT=*
4.8 JCL Generalized for All Job Types

The EXTRALL version of the JCL is a general purpose solution to running the Extract program.

- Can be used for any of the CPS Tools programs -- zPCR, zBNA or zCP3000.
- Generates the files that any of the programs might need.
- Outputs the EDF, the PGNMAP, the BCUMAP, and the DATA file.
- Extracts from SMF type 14, 15, 30, 42, 7x, 89, and 113 records
- Includes all options, although some that are less used may appear as comments.

The highlighted fields must be modified as needed for your installation.

```
//PATTRSN JOB (????,????),MSGLEVEL=1,MSGCLASS=0,NOTIFY=????????
//*
// EXEC PGM=IEFBR14 CLEAN UP
//DD1 DD DISP=(MOD,DELETE),UNIT=SYSDA,SPACE=(TRK,1),
// DSN=PATTRSN.OTHRTYPS.DATA
//DD2 DD DISP=(MOD,DELETE),UNIT=SYSDA,SPACE=(TRK,1),
// DSN=PATTRSN.DATA.TRS
//*
// EXTR EXEC PGM=LOADER
//*
/* PRINT DATA SET FOR MESSAGES FROM YOUR RUN
//PRINT001 DD SYSOUT=*
//*
/* INPUT SMF DATASET
//SMFIN DD DISP=SHR,DSN=PATTRSN.INPUT.SMF
//*
/* OUTPUT DATASET FOR EDFI FILE
//EDF001 DD DISP=SHR,DSN=PATTRSN.CPSTOOLS.JCL(EDFI)
//*
/* OUTPUT DATASET FOR WORKLOAD GROUPING DATASET
//PGN001 DD DISP=SHR,DSN=PATTRSN.CPSTOOLS.JCL(PGNMAP)
//*
/* OUTPUT DATASET FOR AUTO BCU MAP
//BCU001 DD DISP=SHR,DSN=PATTRSN.CPSTOOLS.JCL(BCUMAP)
//*
/* INPUT DATASET FOR IOCP PROCESSING (FICON ANALYSIS)
//IOCP001 DD DISP=SHR,DSN=PATTRSN.CPSTOOLS.JCL(IOCP)
//*
/* DD FOR OPTIONAL INTERNAL SORT OF SMF RECORDS
//SORTMSGS DD SYSOUT=*
//SYSORT DD SYSOUT=*
//*
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(500))
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(500))
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(500))
//SORTWK04 DD UNIT=SYSDA,SPACE=(CYL,(500))
//*
/* OUTPUT DATASET FOR TYPE14, 15, 30 & 42 RECORDS
/* NOTE: DCB INFORMATION FOR THIS DATASETS IS SUBJECT TO CHANGE.
//DATA001 DD SPACE=(CYL,(300,100),RLSE),DISP=(,CATLG),UNIT=SYSDA,
// DSN=PATTRSN.OTHRTYPS.DATA
//*
/* OUTPUT DATASET FOR SAVE= PARAMETER (SAVE CP3K’S SMF RECORDS)
//SMFSAVE DD SPACE=(CYL,(20,10),RLSE),DISP=(,CATLG),UNIT=SYSDA,
// BLKSIZE=8192,DSN=PATTRSN.SMF.SAVE
//*
/* # OPTIONAL USER DUMP DATASET
//SYSUDUMP DD SYSOUT=*
```

This step removes the 2 data sets that will be created below

Input SMF data set

Output EDF goes to other applications

PGN map: Workload data

BCU map: I/O configuration

DATA file: info for zBNA
EXTRALL -- Generalized JCL (continued)

//* ----------------------------------------
//* SYSIN001 DD *
ENT='YOUR COMPANY' YOUR COMPANY NAME
SYSID=SY01 SMF SYSID
DURATION=01:00 DURATION FOR SUMMARY SAMPLES
* DURATION MUST BE A MULTIPLE OF RMF INTERVAL
*TIME=(00:00-24:00) CONTINUOUS PERIOD OF INTEREST
*DATE=(08/05/09-08/12/09) CONTINUOUS DAYS
PGN=GOAL GENERATE PGNMAP
BCU=AUTO GENERATE BCUMAP
SORT=YES IF RECORDS ARE IN SORTED ORDER
* OMITTING SORT=YES WILL SPEED THINGS UP.
//* ----------------------------------------
//* MESSAGES FROM THE MVS LOADER
//* SYSOUT DD SYSOUT=* THE OBJECT MODULE OF THE PROGRAM
//* SYSIN DD DISP=SHR,DSN=PATTRSN.CPSTOOLS.JCL(ZOBJEXTR)
//* ----------------------------------------
//* THIS STEP TERSES THE DATA FILE TO MINIMIZE NETWORK BANDWIDTH
//* IT WILL ISSUE RC=10, IF THERE ARE NO RECORDS IN THE INPUT DSN.
//*
// EXEC PGM=TRSMAIN,PARM=SPACK
// SYSPRINT DD SYSOUT=* 
// INFILE DD DISP=SHR,DSN=*.EXTR.DATA001
// OUTFILE DD DSN=PATTRSN.DATA.TRS,DISP=(,CATLG,DELETE),
// SPACE=(CYL,(50,15),RLSE),UNIT=SYSDA

Input parameters for the Extract run
Be sure this SYSID is in the SMF input data set
TERSE output data set
5. SMF Input Data Requirements

The following SMF record types and subtypes are used by the Extract program:

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Type of Data</th>
<th>Required for</th>
<th>Subtypes Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Input DS Activity</td>
<td>For zBNA</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Output DS Activity</td>
<td>For zBNA</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Common Address Space Work (accounting</td>
<td>For zBNA, and for T30MAP processing</td>
<td>2 - Activity since previous interval end&lt;br&gt;3 - Activity for interval before step end&lt;br&gt;4 - Step totals&lt;br&gt;5 - Job termination</td>
</tr>
<tr>
<td></td>
<td>information)</td>
<td>or creating the DATA001 dataset</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>DFSMS Statistics (Data Facility Storage</td>
<td>For zBNA if TYPE42=YES also for zCP3000</td>
<td>6 - DASD data set level I/O statistics</td>
</tr>
<tr>
<td></td>
<td>Management Subsystem)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>CPU activity record</td>
<td>Required, except for type 30</td>
<td>1 - CPU, LPAR, coupling facility data&lt;br&gt;2 - Data for cryptographic coprocessors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>processing</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Paging Activity</td>
<td>Only for system paging statistics.</td>
<td>1 (has only one subtype)</td>
</tr>
<tr>
<td>72</td>
<td>Workload Activity</td>
<td>for PGN=GOAL</td>
<td>3 – Workload activity data</td>
</tr>
<tr>
<td>73</td>
<td>Channel Path Activity</td>
<td>for BCU=AUTO</td>
<td>1 (has only one subtype)</td>
</tr>
<tr>
<td>74</td>
<td>Device Activity</td>
<td>for BCU=AUTO</td>
<td>1 – Device activity&lt;br&gt;4 – Coupling facility&lt;br&gt;5 – Cache subsystem&lt;br&gt;8 - Enterprise Disk System</td>
</tr>
<tr>
<td>75</td>
<td>Page Data Set Activity</td>
<td>For auxiliary storage information</td>
<td>1 (has only one subtype)</td>
</tr>
<tr>
<td>78</td>
<td>I/O Queuing Activity</td>
<td>for BCU=AUTO</td>
<td>2 – Virtual storage&lt;br&gt;3 – I/O queuing &amp; HiperPAV</td>
</tr>
<tr>
<td>113</td>
<td>Hardware capacity</td>
<td>all tools</td>
<td>Contains hardware capacity, reporting, and statistics for IBM System z10 or later machines.&lt;br&gt;2 – Hardware data event counters</td>
</tr>
</tbody>
</table>
SMF records are expected to be in sequence by DATE and Time. If they are not, use SORT=YES control statement. Or use the JCL in part 4.6 to rectify that situation.

While at it, the file can be reduced in size by selecting only the required records. Do this with these input parameters: Date, Time, Select, and Exclude.

Record Types 76, 77, and 79 are currently ignored.

**Note:** the Extract Program will eliminate duplicate records in the input stream. (Occasionally customer procedures are such that records are duplicated in the SMF input stream). If records are discarded a message will indicate how many have been discarded.

**Note:** If you have CMF (Boole and Babbage’s equivalent of monitor I) data it is successfully processed by Extract Program as well.
6. Map Files

There are three supplemental map files that can help provide additional control in processing.

<table>
<thead>
<tr>
<th>Map</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCU</td>
<td>Combine control units with identical channel configurations</td>
</tr>
<tr>
<td>PGN</td>
<td>Combine service classes for reporting</td>
</tr>
<tr>
<td>T30</td>
<td>Break out workloads in greater detail using type 30 records</td>
</tr>
</tbody>
</table>

6.1 BCU Map

BCU (basic control unit) is a term used in the Extract program to represent a physical control unit -- the “box” that may contain multiple LCUs (logical control units). The BCU map provides a mechanism to combine LCUs that are part of the same physical control unit. I.e., a number of LCUs of a single current technology control unit will be reported as only one control unit.

6.1a How the Program Builds the BCU Map

When you request that a BCU Map be built by specifying BCU=AUTO the processing is as follows (type 74 subtype 1 records are required to do BCU processing. If not present you should omit the BCU DD statement and the BCU=AUTO parameter).

1. If you provide a DD for the IOCP001 DD the associated dataset with IOCP data is read in. Normally the IOCDS is only needed for the FICON aggregation function.

2. Then in all cases the SMF data is read in.
   - Type 74 subtype 1 - for device information (required)
   - Type 74 subtype 5 - for control unit caches and names
   - Type 78 subtype 1 - for LCU to path information

3. Next combining of Disk LCUs into BCUs takes place. The first combining takes place using NED (node element descriptor) data. NED data is control unit/device data that a device sends to the host in response to a particular command. Control unit NED data is in 74.5 records and device NED data is in 74.1 records.

4. Using the NED data the program can determine what a physical box is (i.e., the BCU) and will combine all LCUs and channels for a given NED Id into that one BCU.

5. If BCU=FICONAG is specified only LCUs with identical channel configurations are combined based on NED data. This normally results in 2 BCUs for a shark control unit.

The result of this is that we should have essentially one BCU per box (unless we have used BCU=FICONAG). If BCU=COM has been specified additional combining will take place. Since we are combining control units with identical channel configurations it means that control units on copper channels where the control units are daisy chained are combined.

Also if BCU=COM is specified ESCON control units that share the same directors are combined. (This does not happen with the IOCDS option because channel information also includes the ESCON switch and port. These cannot be identical and are not combined.)

If there are 74 subtype 5 records the NED ID determines the type/model, manufacturer, and serial number. Here accurate combining is assured. Without 74 subtype 5 data there is device...
level NED data in the 74 subtype 1 records but it is at the device level. If they are all reporting the same for all devices on a control unit it is possible to correctly combine the devices.

The BCU map provides an address map for z/OS data which identifies the BCU characteristics. Three types of statements can be in the BCU map:

- **TIMESTAMP** has environmental information and will be first
- **BCUx** where x is either blank, T or O defines the BCU characteristics.
- **ADDRS** defines address ranges.

It is important that the BCUx statement labels match across the different systems so that zCP3000 can correlate them. An example is in [part 4.3](#). Here are the OpCodes and operands used in the BCU map file:

<table>
<thead>
<tr>
<th>OpCode</th>
<th>BCU Operands</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMESTAMP</td>
<td>Defines Environmental information, Generated for:</td>
</tr>
<tr>
<td>SYSID=</td>
<td>BCU=IOCP and BCU=AUTO. Required</td>
</tr>
<tr>
<td>PART=</td>
<td>BCU=IOCP. The partition name in the IOCP definition</td>
</tr>
<tr>
<td>IOCPDATE=</td>
<td>BCU=IOCP. The date from the IOCP definition if present</td>
</tr>
<tr>
<td>IOCPTIME=</td>
<td>BCU=IOCP. The time from the IOCP definition if present</td>
</tr>
<tr>
<td>IODFDATE=</td>
<td>BCU=IOCP. Last date of the IODF file from type 78 records</td>
</tr>
<tr>
<td>IODFTIME=</td>
<td>BCU=IOCP. The time of the IODF file from type 78 records</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BCU</th>
<th>BCUT</th>
<th>BCUO</th>
</tr>
</thead>
<tbody>
<tr>
<td>The BCU identifier ends with: blank for DASD, T or Tape, and O for other. These opcodes will each have a label -- a character string starting in position 1 to uniquely identify this BCU across the enterprise. For shared DASD this string should be the same for each SYSID mapping.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTYPE=</td>
<td>Required for RMF before 4.2.0. Device type, e.g. 3990-3</td>
<td></td>
</tr>
<tr>
<td>CACHE=</td>
<td>Cache size if controller is cached. Defaults to 0</td>
<td></td>
</tr>
<tr>
<td>NVS=</td>
<td>Non-volatile storage size if controller is cached. Defaults to 0</td>
<td></td>
</tr>
<tr>
<td>CHPID=</td>
<td>The chpids used by this BCU</td>
<td></td>
</tr>
<tr>
<td>SWCHS=</td>
<td>The switches corresponding to the CHPIDs</td>
<td></td>
</tr>
<tr>
<td>LINKS=</td>
<td>The switch links corresponding to the CHPIDs</td>
<td></td>
</tr>
<tr>
<td>CHPTYP=</td>
<td>The CHPID types corresponding to the CHPIDs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADDRS</th>
<th>The address identifier includes these sub-fields:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD=</td>
<td>The range of addresses defined by this line</td>
</tr>
<tr>
<td>LCU=</td>
<td>The LCU number for these addresses</td>
</tr>
<tr>
<td>RMF=</td>
<td>Y or N whether RMF data was found for this range of devices</td>
</tr>
<tr>
<td>DEVT=</td>
<td>The device type (e.g. 3380K)</td>
</tr>
</tbody>
</table>
### 6.1b BCU Map – Sample Output with BCU=AUTO

<table>
<thead>
<tr>
<th>TIMESTMP</th>
<th>SYSD=PRD0</th>
<th>00010001</th>
<th>VSPSSD0</th>
<th>BCUD</th>
<th>CTYP=3990-2, CACH=0, NVS=0,</th>
<th>X00020003</th>
<th>MFR=HTC, SER=03111,</th>
<th>X00020004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHPID=(4C, 4D, 7C)</td>
<td>00020004</td>
<td>ADDR</td>
<td>AD=0200-0202, LCU=009C, RMF=Y, DEVT=33903</td>
<td>00020004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDEVTB7</td>
<td>BCUD</td>
<td>CTYP=9393-2, CACH=2048, NVS=8,</td>
<td>X00030006</td>
<td>MFR=IBM, SER=24325, PLNT=91,</td>
<td>X00030007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHPID=(50, 51, 52, 53, 6E, 6F, 80, 81)</td>
<td>00030008</td>
<td>ADDR</td>
<td>AD=D600-D63F, LCU=01AC, RMF=Y, DEVT=33903, SSID=0061</td>
<td>00030009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADDR</td>
<td>AD=D640-D67F, LCU=01B0, RMF=Y, DEVT=33903, SSID=0062</td>
<td>00030010</td>
<td>ADDR</td>
<td>AD=D680-D6BF, LCU=01B4, RMF=Y, DEVT=33903, SSID=0063</td>
<td>00030011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADDR</td>
<td>AD=D6C0-D6FF, LCU=01B8, RMF=Y, DEVT=33903, SSID=0064</td>
<td>00030012</td>
<td>ADDR</td>
<td>AD=D700-D73F, LCU=01BC, RMF=Y, DEVT=33903, SSID=0071</td>
<td>00040016</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADDR</td>
<td>AD=D740-D77F, LCU=01C0, RMF=Y, DEVT=33903, SSID=0072</td>
<td>00040017</td>
<td>ADDR</td>
<td>AD=D780-D7BF, LCU=01C4, RMF=Y, DEVT=33903, SSID=0073</td>
<td>00040018</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADDR</td>
<td>AD=D7C0-D7FF, LCU=01C8, RMF=Y, DEVT=33903, SSID=0074</td>
<td>00040019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.2 PGN Map

The PGNMAP (Performance Group Name Mapping) is a work file for the WLM (workload management) description of the workload and service class (business units). (The earlier performance group name convention has given way to goal mode operation but the old name is still being used here).

The PGN Mapping mechanism includes a way for you to manually combine service classes for reporting. However, the newer zCP3000 application will handle this automatically so manual adjustments are usually not necessary.

6.2a PGN Map – Reporting Classes

Reporting classes are included in the EDF and can be viewed in zCP3000. Analysis of most aspects of workloads can be done with these.

Reporting classes can be used in place of a service class but be sure to understand how the reporting classes are set up. A reporting class must correspond to a given workload class. Since this does not always happen, problems can occur.

If you are going to make manual adjustments to the service classes the following steps outline a procedure to verify that you have good data. (An example is in part 6.2b).

1. Do one standard Extract run with PGN=GOAL. This will build a PGNMAP file.
2. Open the PGNMAP file and find the entries for the reporting performance groups – they will contain “RPT=1”.
3. Change the reporting classes you want to “RPT=0”. Then comment out the corresponding service classes.
4. Also comment out the workload called “THE REST” – it will be at the very end of the list of workloads.
5. Remove PGN=GOAL and run the Extract again.
6. Load the two files separately into zCP3000. If everything lined up correctly the capture ratio will be identical in each of the files. If this is not the case the reporting performance groups do not correspond directly with the service class.

Note: The reporting classes that have been updated in the PGNMAP file will not be available in the reporting class view in zCP3000. In GOAL Mode it is defined by the WORKLOAD name (R723MWNM) and the Service Class name (R723MCMN). The Workload and Service Class data is mapped to a unique description.

(PGN=GOAL) builds a description of WORKLOAD.SCLASS as a default. Each description defines a unique business unit. To combine data from different workload and service class, make their descriptions be the same.

In the example in part 6.2b both “SSYSTEM.SYSTEM” and “SYSTEM.SYSSTC” are combined into one unit called “STUFF”.

A mapping for each SYSID can be provided or where a performance group maps to a business unit for all SYSIDs to be processed an “*” is permitted indicating any SYSID. One workload name can now appear across multiple SYSIDs in zCP3000.
The PRTY (priority) field is the relative priority of the workload. This is not so easy to establish in GOAL mode. CP3KEXTR will artificially construct a relative priority value from the R723CIMP (the importance) field. It will be 11-R723CIMP. It is an optional field.

The PGN mapping file contains the following parameters. Two lines are allowed for each. An asterisk for a workload name means put anything not yet processed into this bucket. (See “The Rest” in the example).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSID=</td>
<td>A character string to identify the SMF ID of the system image corresponding to this data. If this is valid for all images an '*' may be used.</td>
</tr>
<tr>
<td>PGN=</td>
<td>This is ignored. PGN=0 is provided by PGN=GOAL as a default.</td>
</tr>
<tr>
<td>PER=</td>
<td>An optional specification of performance group period. A specification of PER=’*’ will group all periods. This parameter is optional.</td>
</tr>
<tr>
<td>PRTY=</td>
<td>Relative priority of the performance group. Parameter is optional and defaults to 0.</td>
</tr>
<tr>
<td>DESC=</td>
<td>A unique character string describing the business unit. Field length for CP3KEXTR is 48, but zCP3000 will only display the first 26 characters.</td>
</tr>
<tr>
<td>WORKLOAD=</td>
<td>A unique character string describing the workload name as it would have appeared in an RMF workload report. The field length is eight characters. If this is WORKLOAD=’*’ then all data not already processed will be collected here (this should be the last entry in the PGNMAP file). See the example for “The Rest”.</td>
</tr>
<tr>
<td>SCLASS=</td>
<td>A unique character string describing the service class name as it would have appeared in an RMF workload report. Field length is 8 characters.</td>
</tr>
</tbody>
</table>

Example of a single PGN map entry:

```
SYSID=X001 PGN=0 PRTY=9 DESC='CICSTEST.FBTEST'
PER=* WORKLOAD=CICSTEST SCLASS=FBTEST
```
6.2b PGN Map – Sample Using Goal Mode

*******************************************************************
* SYSID= MUST BEGIN IN COL 1 TO INDICATE START OF RECORD
* DESC= THE DESCRIPTION IS THE WORKLOAD NAME.SERVICE CLASS
* PGN= IS UNUSED IN GOAL MODE (GOAL MODE IS WHEN WORKLOAD IS NOT BLANK)
* PRTY= IN GOAL MODE IS 10-19 depending on importance of goal
* SCLASS= IS SERVICE CLASS NAME S723MCNM
* REPORT CLASSES ARE COMMENTED OUT
*******************************************************************
*
SYSID=X001 PGN=0 PRTY=9 DESC='CICSTEST.FBTEST' PER=* WORKLOAD=CICSTEST SCLASS=FBTEST
SYSID=X001 PGN=0 PRTY=8 DESC='TSOTEST.TSOT1' PER=1 WORKLOAD=TSOTEST SCLASS=TSOT
SYSID=X001 PGN=0 PRTY=8 DESC='TSOTEST.TSOT2' PER=2 WORKLOAD=TSOTEST SCLASS=TSOT
SYSID=X001 PGN=0 PRTY=7 DESC='TSOTEST.TSOT3' PER=3 WORKLOAD=TSOTEST SCLASS=TSOT
SYSID=X001 PGN=0 PRTY=6 DESC='TSOTEST.TSOT4' PER=4 WORKLOAD=TSOTEST SCLASS=TSOT
SYSID=X001 PGN=0 PRTY=0 DESC='TSOTEST.TSOT*' PER=* WORKLOAD=TSOTEST SCLASS=TSOT
*
SYSID=X001 PGN=0 PRTY=0 DESC='STUFF' PER=* WORKLOAD=SYSTEM SCLASS=SYSTEM
SYSID=X001 PGN=0 PRTY=0 DESC='STUFF' PER=* WORKLOAD=SYSTEM SCLASS=SYSSTC
*
SYSID=X001 PGN=0 PRTY=0 DESC='The Rest' PER=* WORKLOAD=* SCLASS=any
*
.......

These will be combined for summarization because the descriptions match.
6.2c PGN Map – Sample Using Reporting Classes

****************************************************************************
* SYSID=MUST BEGIN IN COL 1 TO INDICATE START OF RECORD
* DESC, THE DESCRIPTION IS THE WORKLOAD NAME || SERVICE CLASS
* PRTY IN GOAL MODE IS 10-S723CIMP RELATIVE IMPORTANCE OF GOAL
* SCLASS IS SERVICE CLASS NAME S723MCNM
* RPT = 1 IS REPORTING PERFORMANCE GROUPS
****************************************************************************

* SYSID=PROD RPT=0 PRTY=33 DESC='BATCHPRD.BATCHHOT ' PER=* WORKLOAD=BATCHPRD SCLASS=BATCHHOT
* SYSID=PROD RPT=0 PRTY=21 DESC='BATCHPRD.BATCHPRD ' PER=* WORKLOAD=BATCHPRD SCLASS=BATCHPRD
* SYSID=PROD RPT=0 PRTY=50 DESC='DDFDB2.DDFDB2.1 ' PER=1 WORKLOAD=DDFDB2 SCLASS=DDFDB2
* SYSID=PROD RPT=0 PRTY=34 DESC='DDFDB2.DDFDB2.2 ' PER=2 WORKLOAD=DDFDB2 SCLASS=DDFDB2
* SYSID=PROD RPT=0 PRTY=22 DESC='DDFDB2.DDFDB2.3 ' PER=3 WORKLOAD=DDFDB2 SCLASS=DDFDB2
* SYSID=PROD RPT=0 PRTY=0 DESC='DISCRET.DISCRET ' PER=* WORKLOAD=DISCRET SCLASS=DISCRET
* SYSID=PROD RPT=0 PRTY=46 DESC='STC.STCDB2HI ' PER=* WORKLOAD=STC SCLASS=STCDB2HI
* SYSID=PROD RPT=0 PRTY=54 DESC='STC.STCDB2LO ' PER=* WORKLOAD=STC SCLASS=STCDB2LO
* SYSID=PROD RPT=0 PRTY=54 DESC='STC.STCDB2MD ' PER=* WORKLOAD=STC SCLASS=STCDB2MD
* SYSID=PROD RPT=0 PRTY=50 DESC='TSO.TSO.1 ' PER=1 WORKLOAD=TSO SCLASS=TSO
* SYSID=PROD RPT=0 PRTY=255 DESC='SYSTEM.SYSTEM ' PER=* WORKLOAD=SYSTEM SCLASS=SYSTEM
* SYSID=PROD RPT=0 PRTY=254 DESC='SYSTEM.SYSSTC ' PER=* WORKLOAD=SYSTEM SCLASS=SYSSTC
* SYSID=PROD RPT=1 PRTY=21 DESC='.BATCHPRD ' PER=* WORKLOAD= SCLASS=BATCHPRD
* SYSID=PROD RPT=0 PRTY=46 DESC='.STCRTC ' PER=* WORKLOAD= SCLASS=STCRTC
* SYSID=PROD RPT=1 PRTY=50 DESC='.TSO.1 ' PER=1 WORKLOAD= SCLASS=TSO
* SYSID=* PRT=0 PRTY=0 DESC='THE REST ' PER=* WORKLOAD=* SCLASS=* RPT=0
6.3 T30 Map

There are cases where the breakdowns by workloads is not as granular we would like. In cases like these we can create a mapping using parameters in Type 30 (work unit accounting) records to break out workloads in greater detail than is possible with WLM Service Classes. To do this the customer must be collecting type 30 interval records (Subtype 2 and 3).

There are some differences between the workload data generated by using SMF Type 72 via a PGNMAP and using SMF Type 30 via a T30MAP.

- The T30 data does not include a lot of the SYSTEM information since SMF 30 is only recording address spaces started after SMF. That’s not too much of a problem for the business unit capture ratio but can be for the overall system CR. If you use T72 data, the SYSTEM work is often deleted anyway.

- The T30 data offers you the opportunity to break down the workload in zCP3000 to a much finer granularity. Often all of CICS is put into one service class which means that it will appear as one workload in zCP3000. You can split the CICS workload by using T30 data and jobname as the classification of work.

- You should remember to make the DUR parameter is larger than the type 30 interval.

This option will generate an additional set of workloads like those resulting from the PGNMAP with a different header in the EDF file. Once in zCP3000 you can only process one of these at a time. By default it will be the PGN001 data, but you can set the profile option “TYPE 30” in zCP3000 so it will read the T30M001 instead.

This file is very similar to the PGN map except there is no way to automatically generate one. Therefore, you will need to code this mapping file yourself. Refer to part 6.3a. The program looks through this map and the first match it finds will be the entry where the data is accumulated.

Each entry begins with SYSID= in column one and can be at most two lines long. It can have at most one field for job name or RACF userid etc. (Note: WLM= and SCN= must both be specified together.)

For example JOBN=PROD* or JOBN=TEST%% will collect either all jobs which begin with PROD or all jobs that begin with TEST and two characters. To combine these entries in the output the DESC fields for both of these should be the same.

A mapping for each SYSID can be provided or where a performance group maps to a business unit for all SYSIDs to be processed, an "*" is permitted indicating any SYSID.

One workload name can now appear across multiple SYSIDs in zCP3000.

The PRTY (priority) field is a relative priority of the workload. You will need to somehow arrive at values for the different business units. It is an optional field.

If a type 30 record is found which does not satisfy the criteria of one of the entries, the program will create a new entry for this data. This entry will have a description of "workload name.service class name".
The PGN mapping file contains the following parameters. Two lines are allowed. SYSID in column 1 begins the entry.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSID=</td>
<td>A character string to identify the SMF ID of the system image corresponding to this data. If this is valid for all images, an '*' may be used.</td>
</tr>
<tr>
<td>PRTY=</td>
<td>Relative priority of the performance group. Parameter is optional and defaults to 0.</td>
</tr>
<tr>
<td>DESC=</td>
<td>A unique character string describing the business unit. Field length for CP3KEXTR is 48, but zCP3000 will only display the first 26 characters. Workload descriptions must be unique for each SYSID.</td>
</tr>
<tr>
<td>JOBN=</td>
<td>The job name indicated in the type 30 record.</td>
</tr>
<tr>
<td>CLASS=</td>
<td>The job class indicated in the type 30 record.</td>
</tr>
<tr>
<td>USER=</td>
<td>The RACF userid in the type 30 record.</td>
</tr>
<tr>
<td>RACF=</td>
<td>The RACF group in the type 30 record.</td>
</tr>
<tr>
<td>PROG=</td>
<td>The program name in the type 30 record.</td>
</tr>
<tr>
<td>WLM=/SCN=</td>
<td>The workload manager name and the service class name. Both must be specified. An example is shown in part 6.3a.</td>
</tr>
</tbody>
</table>

### 6.3a T30 MAP – Sample Data Set

```
SYSID=ASYS DESC='AP' JOBN=PAP*
SYSID=ASYS DESC='BE' JOBN=PBE*
SYSID=ASYS DESC='GL' JOBN=PGL*
SYSID=ASYS DESC='PC' JOBN=PPC*
SYSID=ASYS DESC='PO' JOBN=PPO*
SYSID=ASYS DESC='TR' JOBN=PTR*
SYSID=ASYS DESC='REST' JOBN=*
```
7. “DAT” Output File

The Extract Program can create the DATA001 file containing selected fields from SMF record types 30, 42, 14, & 15. This is a flat text file used by the zBNA program.

When these records are encountered in the SMF input the program checks for a DATA001 DD statement. If present the SMF fields are extracted and written to this file. Some of the same data may also be included in the EDF file.

The first character of each record is a number that indicates the data type (30, 42, 14, or 15) and all records and self defining records will start with this same code.

<table>
<thead>
<tr>
<th>code</th>
<th>SMF type</th>
<th>contains</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>info</td>
<td>Extract run identification data: SMF dataset name, RunDate, RunTime, Extract Version</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>Accounting information</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>DFSMS (Data Facility Storage Management Subsystem) statistics and configuration</td>
</tr>
<tr>
<td>3</td>
<td>14,15</td>
<td>Dataset activity – Input (14) &amp; Output (15)</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>Java batch details</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>LSORT information</td>
</tr>
</tbody>
</table>

Each line for a self-defining field entry includes the following fields, separated by commas:

<table>
<thead>
<tr>
<th>code</th>
<th>The record type code (1,2, or 3). Always position 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME=</td>
<td>The name of the field</td>
</tr>
<tr>
<td>N or C</td>
<td>Whether the output is numeric or character. (Note the output in the file will always be in character format.)</td>
</tr>
<tr>
<td>COLS=</td>
<td>The column in the output in which this field will start</td>
</tr>
<tr>
<td>COLE=</td>
<td>The column in the output in which this field will end</td>
</tr>
</tbody>
</table>

Here is an example of the self defining record data:

```
1*NAME=SMF30DTE,N,COLS=1,COLE=6
1*NAME=SMF30TME,N,COLS=7,COLE=12
1*NAME=SMF30STP,C,COLS=13,COLE=13
```

By default only type 30 subtype 4 records (step totals) and subtype 5 records (job totals) are processed. However by using an additional parameter, “SUB30=2,3,4,5” you may specify which other subtypes are to be included.

For example, SUB30=2,3 indicates that you want just subtypes 2 and 3 and will exclude subtypes 4 and 5 (i.e., specifying the SUB30 parameter overrides the default subtype 4,5). The subtype of the record is included in the output so the post processing program can know the source.
8. EDF Output

The EDF (Enterprise Data File) is the primary output of the Extract program. It is a flat text file that contains the summarized information drawn from the SMF scan. It is an input to other analysis applications like zBNA, zCP3000, and zPCR.

8.1 EDF Format

The EDF is a text file with 80-character fixed-size records divided into named sections. A section name begins in the first position of a line while subsequent section content always starts in position 7. Each record is organized as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>Section name.</td>
</tr>
<tr>
<td>5</td>
<td>&quot;S&quot; when a section is specified. (This value will change when zCP3000 uses this format for output.)</td>
</tr>
<tr>
<td>6</td>
<td>Always blank</td>
</tr>
<tr>
<td>7-72</td>
<td>Information in the form KEYWORD=data appropriate to the section.</td>
</tr>
</tbody>
</table>

The section content consists of a series of expressions, one for each target SMF field. An expression has a key name followed by an equal sign followed by one or more values. Some have just a single value but more often there will be a series of multiple values (a vector) that is made up of the key name, the equal sign, and the following sequence of items:

- Average of the individual values
- Minimum value
- Maximum value
- Standard deviation of the individual values
- Count of values: the number of individual sample values (see below)
- List of individual sample values – one for each reporting interval (see below)

The first 5 items, the summary values, are always present in a multi-item vector. If the individual sample values are not all the same then the list of individual sample values will be present and will follow the count.

But if all the sample values are the same the list of individual sample values will be suppressed. In this case the minimum and the maximum will be equal and the count will indicate the number of sample values but the sample values will not be included. Just the 5 summary numbers will be present.

Issues With Averaging

The average calculation includes all of the individual values, one for each reporting interval, with equal weight. This means that certain measures may result in an average that gives a misleading impression. In such a case the user may wish to examine the detail data.

For example, the DASDRSPV (DASD Response Time) vector may include intervals with very few I/Os along with an interval that has many. The resulting average may not be useful.

Other examples are: DELAYV (the average wait for a tape mount) or ALLOCV (the average allocation time for a tape drive). Intervals which have no mounts will have zero for these intervals and will distort the average calculation.