
Liberty z/OS Java Batch

 Sample
Configuration

An illustration of a multi-JVM topology
Version Date: June 6, 2017

See "Document Change History" on page 34 for a description
of the changes in this version of the document

WP102544 at
ibm.com/support/techdocs

© IBM Corporation 2015

WP102544 – Sample Configuration

Important: the document is provided as an illustration sample
only. It is provided on "as is" basis, and there are no

warranties or conditions of any kind, either express or implied.

You should review and customized to your environment as
needed. The security examples in particular should be

thoroughly reviewed by your security administrator before
being implemented.

This example is provided to illustrate how certain functions are
configured. We make no claim this is in all cases a "best

practice" document. You may have specific requirements for
your environment, which you should take precedence over any

of the examples shown here.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 2 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

Table of Contents
Introduction..4
What this sample does not include.. 5
We are not showing step-by-step in this document...5
Not necessarily "best practices".. 5

Configuration Illustration..6
Liberty z/OS install location... 6
RACF job to create foundational profiles... 6
File system, directories and file structure..8
Job repository DB2 DDL.. 8
Job dispatching queue... 10
Dispatcher server (JSRDISP).. 10
/dropins directory.. 10
server.xml... 11
server.env.. 13
wmq.jmsra.rar.. 13
JSRDISP server JCL start procedure...13
JSRZANGL JCL start procedure.. 14

First executor (JSREXEC1)... 15
/dropins directory.. 15
server.xml... 15
server.env.. 17
wmq.jmsra.rar.. 17
JSREXEC1 server JCL start procedure...17

Second executor (JSREXEC2).. 19
/dropins directory.. 19
server.xml... 19
server.env.. 21
wmq.jmsra.rar.. 21
JSREXEC2 server JCL start procedure...21
Bonus application account table DDL..22

Monitor server (JSRMON)... 23
/dropins directory.. 23
server.xml... 23
server.env.. 24
wmq.jmsra.rar.. 24
JSRMON server JCL start procedure...24

Operation Illustration...26
Start servers.. 26
Submit using batchManager.. 26
Submit using batchManagerZos.. 30
Submit using batchManagerZos and --queueManagerName..32

Document Change History..34

© 2017, IBM Corporation
Americas Advanced Technical Skills - 3 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

Introduction
The purpose of this document is to illustrate and document the following IBM Liberty z/OS Java
Batch configuration topology:

We have that topology working in a real z/OS environment, and in this document we will provide the
configuration files, RACF commands, and other things involved with making this work.

The numbered circles in the picture correspond to the following notes:
1. Dispatcher – the topology we are illustrating separates the job submission and dispatching

Java Virtual Machine (JVM) from the job execution JVM. This server (JSRDISP) acts as the
dispatcher in this multi-JVM topology. We also have the Liberty adminCenter-1.0 feature
configured to illustrate the Java batch tool that provides.

2. Executor – this is the first of two executor servers. In this server we had the SleepyBatchlet
sample application deployed. That application is a simple batchlet that loops for the
specified amount of time, then ends.

3. Executor – this is the second of two executor servers. In this server we had both the
SleepyBatchlet and the BonusPayout applications deployed1. BonusPayout is a "chunk"
application that illustrates iterative processing with checkpoints.

4. MQ queue – the integration between Dispatcher and Executor is a simple queue. In this
sample we are illustrating the use of IBM MQ as the queueing mechanism.

1 We did this to illustrate the use of "or" in the message selector definition on the JMS activation specification. This server will pick up and
run a job submission message for either application.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 4 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

5. batchManager – this is a command line interface client that uses REST to communicate
with the Dispatcher server.

6. batchManagerZos – this is a command line interface client that uses WebSphere
Optimized Local Adapters (WOLA) to communicate with the Dispatcher server.

7. Angel Process – the Angel Process is required when a Liberty z/OS server intends to use a
z/OS authorized service. WOLA is a z/OS authorized service. Therefore, the Angel
Process is required, along with SAF profiles to allow the Dispatcher access to WOLA2.

8. Batch events – we configured the servers to emit batch events for the purpose of
monitoring the status of jobs.

9. Events monitor – this server runs the sample JobLogEventsDirCreator application to
capture the job log events emitted by the servers and write the output to a directory and file.
This validates the batch events configuration is working as designed.

10. MQ topic – the batch events function is a publication/subscribe model, and we used IBM
MQ as the mechanism for hosting the topic and allowing the monitor server to subscribe.

11. DB2 artifacts – underlying this configuration topology is the set of tables for the
"JobRepository" function, as well as a single table for the BonusPayout application.

12. Other artifacts – here we collect up everything else: SAF profiles, JCL start procedures,
configuration files, application files. We will illustrate all those as well.

That picture looks complicated, but as you'll see the configuration is not that complex. That's the
reason for this document: to reveal the actual configuration elements so you can see how things
map to this picture.

What this sample does not include

We are intentionally keeping the security model of this configuration as simple as we can make
it. This configuration makes use of Liberty "basic" security. You will see these "basic" security
definitions in the server.xml configuration files.

Why are we doing this? Because we want the focus on the key functional things illustrated in
the picture above. The moment we introduce such things as SAF keyrings, digital certificates,
and EJBROLE definitions we start to take the focus away from the key points.

WebSphere Liberty Batch is not limited to this "basic" security. It can use SAF for the user
registry, for SSL digital certificates, and for application role enforcement. But that is outside of
the scope of this document. Here we want you to stay focused on the multi-JVM model, the use
of MQ as the integration mechanism between Dispatcher and Executors, and the batch events
mechanism for monitoring.

We are not showing step-by-step in this document

In this document we are showing you the final result, along with some of the commands used to
create the final result. But we are not going through each step we performed to accomplish this
final result. That is provided at:
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102544

Under the "Step-by-Step Implementation Guide" section header found there.

Not necessarily "best practices"

What we're showing here may not be exactly what you would do. For example, the naming
convention we use may not map to what you require. Or our use of JDBC Type 4, or MQ client
mode may not be what you would do. That's okay: use this as an example. Tailor your actual
environment based on the specific things you know are right for you.

2 If the batchManagerZos command line client were removed from this picture, then WOLA would not be present and the Angel Process
would not be required. The Angel process may come back into the picture if other z/OS authorized services were used, such as SAF
authorization. But for this sample illustration we need the Angel Process just for WOLA.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 5 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102544

WP102544 – Sample Configuration

Configuration Illustration
Liberty z/OS install location

In our environment, the 16.0.0.4 level of Liberty z/OS was installed at:

/shared/zWebSphere/Liberty/V16004

RACF job to create foundational profiles

The following was the SYSTSIN DD for the JCL we ran to create the RACF profiles for this
sample configuration.

Important! Security profiles should be reviewed by your security administrator prior to being created
and used. These are what we used, but your security policies may indicate different values.

ADDGROUP JSRGRP OMVS(AUTOGID) OWNER(SYS1)

ADDUSER JSRANGL DFLTGRP(JSRGRP) OMVS(AUTOUID HOME(/shared/jsrhome/) -
 PROGRAM(/bin/sh)) NAME('LIBERTY ANGEL') NOPASSWORD NOOIDCARD

ADDUSER JSRSERV DFLTGRP(JSRGRP) OMVS(AUTOUID HOME(/shared/jsrhome) -
 PROGRAM(/bin/sh)) NAME('LIBERTY SERVER')
ALTUSER JSRSERV PASSWORD(JSRSERV) NOEXPIRED

RDEFINE STARTED JSRZANGL.* UACC(NONE) -
 STDATA(USER(JSRANGL) GROUP(JSRGRP) -
 PRIVILEGED(NO) TRUSTED(NO) TRACE(YES))
RDEFINE STARTED JSRDISP.* UACC(NONE) -
 STDATA(USER(JSRSERV) GROUP(JSRGRP) -
 PRIVILEGED(NO) TRUSTED(NO) TRACE(YES))
RDEFINE STARTED JSREXEC1.* UACC(NONE)-
 STDATA(USER(JSRSERV) GROUP(JSRGRP) -
 PRIVILEGED(NO) TRUSTED(NO) TRACE(YES))
RDEFINE STARTED JSREXEC2.* UACC(NONE)-
 STDATA(USER(JSRSERV) GROUP(JSRGRP) -
 PRIVILEGED(NO) TRUSTED(NO) TRACE(YES))
RDEFINE STARTED JSRMON.* UACC(NONE)-
 STDATA(USER(JSRSERV) GROUP(JSRGRP) -
 PRIVILEGED(NO) TRUSTED(NO) TRACE(YES))
SETROPTS RACLIST(STARTED) REFRESH

RDEFINE SERVER BBG.ANGEL UACC(NONE) OWNER(SYS1)
PERMIT BBG.ANGEL CLASS(SERVER) ACCESS(READ) ID(JSRSERV)
RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM UACC(NONE) OWNER(SYS1)
PERMIT BBG.AUTHMOD.BBGZSAFM -
 CLASS(SERVER) ACCESS(READ) ID(JSRSERV)
RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.SAFCRED UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM.SAFCRED -
 CLASS(SERVER) ACCESS(READ) ID(JSRSERV)
RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.ZOSWLM UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM.ZOSWLM -
 CLASS(SERVER) ACCESS(READ) ID(JSRSERV)
RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.TXRRS UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM.TXRRS -
 CLASS(SERVER) ACCESS(READ) ID(JSRSERV)
RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.ZOSDUMP UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM.ZOSDUMP -
 CLASS(SERVER) ACCESS(READ) ID(JSRSERV)
RDEFINE SERVER BBG.SECPFX.BBGZDFLT UACC(NONE)
PERMIT BBG.SECPFX.BBGZDFLT -
 CLASS(SERVER) ACCESS(READ) ID(JSRSERV)

© 2017, IBM Corporation
Americas Advanced Technical Skills - 6 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.WOLA UACC(NONE) OWNER(SYS1)
PERMIT BBG.AUTHMOD.BBGZSAFM.WOLA -
 CLASS(SERVER) ACCESS(READ) ID(JSRSERV)
RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.LOCALCOM UACC(NONE) OWNER(SYS1)
PERMIT BBG.AUTHMOD.BBGZSAFM.LOCALCOM -
 CLASS(SERVER) ACCESS(READ) ID(JSRSERV)
RDEFINE SERVER BBG.AUTHMOD.BBGZSCFM UACC(NONE) OWNER(SYS1)
PERMIT BBG.AUTHMOD.BBGZSCFM -
 CLASS(SERVER) ACCESS(READ) ID(JSRSERV)
RDEFINE SERVER BBG.AUTHMOD.BBGZSCFM.WOLA UACC(NONE) OWNER(SYS1)
PERMIT BBG.AUTHMOD.BBGZSCFM.WOLA -
 CLASS(SERVER) ACCESS(READ) ID(JSRSERV)
RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.PRODMGR UACC(NONE) OWNER(SYS1)
PERMIT BBG.AUTHMOD.BBGZSAFM.PRODMGR -
 CLASS(SERVER) ACCESS(READ) ID(JSRSERV)
RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.ZOSAIO UACC(NONE) OWNER(SYS1)
PERMIT BBG.AUTHMOD.BBGZSAFM.ZOSAIO -
 CLASS(SERVER) ACCESS(READ) ID(JSRSERV)
SETROPTS RACLIST(SERVER) REFRESH

RDEFINE CBIND BBG.WOLA.LIBERTY.BATCH.MANAGER UACC(NONE) OWNER(SYS1)
PERMIT BBG.WOLA.LIBERTY.BATCH.MANAGER CLASS(CBIND) ACCESS(READ) -
 ID(USER1)
SETROPTS RACLIST(CBIND) REFRESH

Notes:

• The JSRSERV ID is the STC ID, and here we show it being assigned a password. STC IDs
should not have passwords as a general rule, but in this case we gave it one so we could easily
log in using that ID and create the server. At a minimum we would modify this ID to have
NOPASSWORD after the server was created.

• The JSRSERV ID is the both the configuration file owning ID as well as the STC ID. You may not
wish to do this in a production environment. Your security policies may require the STC ID not
have write to the configuration file. For a test environment such as this, having the STC ID own
the configuration files is simpler.

• The STARTED profiles assume we have a separate JCL start procedure for each server. As you
will see, we did just that: we copied the sample JCL start proc and named it equal to each server
name.

• We created every possible SERVER profile and granted the STC ID JSRSERV read access to all of
them. This was more than was needed. The batchManagerZos use of WOLA implied just a
few were actually needed. We provided this to illustrate what all the SERVER profiles are, and to
show you the messages in the messages.log file that illustrate each authorized function being
available to the server.

• The CBIND profile is what allows the user – USER1 in this example – the ability to run
batchManagerZos and establish a WOLA connection into the Dispatcher server. This example
assumes a WOLA "three part name" of LIBERTY+BATCH+MANAGER. You'll see that reflected in
the server.xml for the Dispatcher server.

If you are interested in a better understanding of the options available for the file system
ownership and STC ID for Liberty z/OS, see:
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102687

© 2017, IBM Corporation
Americas Advanced Technical Skills - 7 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102687

WP102544 – Sample Configuration

File system, directories and file structure

The following diagram illustrates the file system structure3 for the sample environment:

Notes:

• The WLP_USER_DIR in this case was /shared/jsrhome. We mounted the OMVS.JSR.ZFS at
that location, then created the servers with the Liberty server shell script.

• We created the servers while logged in as JSRSERV. All the files are owned by JSRSERV, with
group ownership of JSRGRP.

• We could have made use of shared directories and Liberty <include> processing, but chose to
keep things intuitively simple, even if that meant some duplication existed.

Job repository DB2 DDL

The following DDL was produced by the ddlGen shell script which comes with Liberty. That
shell script produced output to a file. The DDL was modified to fit into 80 colums and placed in
a SPUFI input member and run. See the notes that follow.

3 Not all directories are shown. Some were omitted to provide focus on the key directories and files.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 8 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

CREATE TABLE JBATCH.JOBINSTANCE
 (JOBINSTANCEID BIGINT GENERATED ALWAYS AS IDENTITY NOT NULL,
 AMCNAME VARCHAR(512), BATCHSTATUS INTEGER NOT NULL, CREATETIME
 TIMESTAMP NOT NULL, EXITSTATUS VARCHAR(512),
 INSTANCESTATE INTEGER NOT NULL, JOBNAME VARCHAR(256),
 JOBXMLNAME VARCHAR(128), JOBXML BLOB(64000),
 NUMEXECS INTEGER NOT NULL, RESTARTON VARCHAR(128),
 SUBMITTER VARCHAR(256), UPDATETIME TIMESTAMP,
 PRIMARY KEY (JOBINSTANCEID)) CCSID UNICODE;
CREATE TABLE JBATCH.STEPTHREADINSTANCE
 (PARTNUM INTEGER NOT NULL, STEPNAME VARCHAR(128) NOT NULL,
 THREADTYPE VARCHAR(31), CHECKPOINTDATA BLOB(64000),
 FK_JOBINSTANCEID BIGINT NOT NULL, FK_LATEST_STEPEXECID
 BIGINT NOT NULL, PARTITIONED SMALLINT DEFAULT 0 NOT NULL,
 PARTITIONPLANSIZE INTEGER, STARTCOUNT INTEGER,
 PRIMARY KEY (PARTNUM, STEPNAME, FK_JOBINSTANCEID))
 CCSID UNICODE;
CREATE INDEX JBATCH.STI_FKINSTANCEID_IX ON
 JBATCH.STEPTHREADINSTANCE (FK_JOBINSTANCEID);
CREATE INDEX JBATCH.STI_FKLATEST_SEI_IX ON
 JBATCH.STEPTHREADINSTANCE (FK_LATEST_STEPEXECID);
CREATE TABLE JBATCH.JOBEXECUTION
 (JOBEXECID BIGINT GENERATED ALWAYS AS IDENTITY NOT NULL,
 BATCHSTATUS INTEGER NOT NULL, CREATETIME TIMESTAMP NOT NULL,
 ENDTIME TIMESTAMP, EXECNUM INTEGER NOT NULL,
 EXITSTATUS VARCHAR(512), JOBPARAMETERS BLOB(64000),
 UPDATETIME TIMESTAMP, LOGPATH VARCHAR(512),
 RESTURL VARCHAR(512), SERVERID VARCHAR(256),
 STARTTIME TIMESTAMP, FK_JOBINSTANCEID BIGINT
 NOT NULL, PRIMARY KEY (JOBEXECID)) CCSID UNICODE;
CREATE INDEX JBATCH.JE_FKINSTANCEID_IX ON
 JBATCH.JOBEXECUTION (FK_JOBINSTANCEID);
CREATE TABLE JBATCH.STEPTHREADEXECUTION
 (STEPEXECID BIGINT GENERATED ALWAYS AS IDENTITY NOT NULL,
 THREADTYPE VARCHAR(31), BATCHSTATUS INTEGER NOT NULL,
 M_COMMIT BIGINT NOT NULL, ENDTIME TIMESTAMP, EXITSTATUS
 VARCHAR(512), M_FILTER BIGINT NOT NULL, INTERNALSTATUS
 INTEGER NOT NULL, PARTNUM INTEGER NOT NULL,
 USERDATA BLOB(64000), M_PROCESSSKIP BIGINT NOT NULL,
 M_READ BIGINT NOT NULL, M_READSKIP BIGINT NOT NULL,
 M_ROLLBACK BIGINT NOT NULL, STARTTIME TIMESTAMP,
 STEPNAME VARCHAR(128) NOT NULL, M_WRITE BIGINT NOT NULL,
 M_WRITESKIP BIGINT NOT NULL, FK_JOBEXECID BIGINT NOT NULL,
 FK_TOPLVL_STEPEXECID BIGINT, ISPARTITIONEDSTEP SMALLINT
 DEFAULT 0, PRIMARY KEY (STEPEXECID)) CCSID UNICODE;
CREATE INDEX JBATCH.STE_FKJOBEXECID_IX ON
 JBATCH.STEPTHREADEXECUTION (FK_JOBEXECID);
CREATE INDEX JBATCH.STE_FKTLSTEPEID_IX ON
 JBATCH.STEPTHREADEXECUTION (FK_TOPLVL_STEPEXECID);
CREATE TABLE JBATCH.JOBPARAMETER (NAME VARCHAR(255),
 VALUE VARCHAR(255), FK_JOBEXECID BIGINT) CCSID UNICODE;
CREATE INDEX JBATCH.JP_FKJOBEXECID_IX ON
 JBATCH.JOBPARAMETER (FK_JOBEXECID);
ALTER TABLE JBATCH.STEPTHREADEXECUTION ADD CONSTRAINT
 STPTHRADEXECUTION0 UNIQUE (FK_JOBEXECID, STEPNAME, PARTNUM);
ALTER TABLE JBATCH.STEPTHREADINSTANCE ADD CONSTRAINT
 STPTHRFKLTSTSTPXCD FOREIGN KEY (FK_LATEST_STEPEXECID)
 REFERENCES JBATCH.STEPTHREADEXECUTION (STEPEXECID);
ALTER TABLE JBATCH.STEPTHREADINSTANCE ADD CONSTRAINT

© 2017, IBM Corporation
Americas Advanced Technical Skills - 9 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

 STPTHRDNFKJBNSTNCD FOREIGN KEY (FK_JOBINSTANCEID)
 REFERENCES JBATCH.JOBINSTANCE (JOBINSTANCEID);
ALTER TABLE JBATCH.JOBEXECUTION ADD CONSTRAINT
 JBXCTNFKJBNSTNCEID FOREIGN KEY (FK_JOBINSTANCEID)
 REFERENCES JBATCH.JOBINSTANCE (JOBINSTANCEID);
ALTER TABLE JBATCH.STEPTHREADEXECUTION ADD CONSTRAINT
 STPTHFKTPLVLSTPXCD FOREIGN KEY (FK_TOPLVL_STEPEXECID)
 REFERENCES JBATCH.STEPTHREADEXECUTION (STEPEXECID)
 ON DELETE NO ACTION;
ALTER TABLE JBATCH.STEPTHREADEXECUTION ADD CONSTRAINT
 STPTHRDXCTNFKJBXCD FOREIGN KEY (FK_JOBEXECID)
 REFERENCES JBATCH.JOBEXECUTION (JOBEXECID);
ALTER TABLE JBATCH.JOBPARAMETER ADD CONSTRAINT
 JBPRMETERFKJBXECID FOREIGN KEY (FK_JOBEXECID)
 REFERENCES JBATCH.JOBEXECUTION (JOBEXECID);

Notes:

• Do not simply copy and paste from this listing. You should be in the practice of generating the
DDL using the ddlGen utility and using the generated DDL, not DDL from a document that may
be backlevel from the level of Liberty you're using.

• The DDL listing above does not include any other DB2 definitions you may require, such as
STOGROUP, or GRANT. Review this with your DB administrator and implement according to
your local policies.

• The ON DELETE NO ACTION statement (in red above) was added manually. Our local
CURRENT RULES was set to DB2, which mandated an 'ON DELETE' action when a constraint
references the same table. You may not require this, depending on your CURRENT RULES.

Job dispatching queue

This is a defined queue that sits between the Dispatcher server (JSRDISP) and the Executor
servers (JSREXEC1 and JSREXEC2). The Dispatcher server is defined to put its job submission
messages on this queue; the Executor servers have JMS activation specifications defined to
listen on ths queue.

The queue we created was called JSR.BATCH.QUEUE, and it was defined as a local queue in
our environment. Using MQ Explorer, the queue definition looked like this:

Dispatcher server (JSRDISP)

/dropins directory

No applications were deployed to this server.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 10 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

server.xml
<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

 <!-- Enable features -->
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>batch-1.0</feature>
 <feature>batchManagement-1.0</feature>
 <feature>zosLocalAdapters-1.0</feature>
 <feature>appSecurity-2.0</feature>
 <feature>wmqJmsClient-2.0</feature>
 <feature>adminCenter-1.0</feature>
 </featureManager>

 <keyStore id="defaultKeyStore" password="Liberty"/>

 <basicRegistry id="basic1" realm="jbatch">
 <user name="Fred" password="fredpwd" />
 </basicRegistry>

 <authorization-roles id="com.ibm.ws.batch">
 <security-role name="batchAdmin">
 <special-subject type="EVERYONE"/>
 <user name="Fred" />
 </security-role>
 </authorization-roles>

 <administrator-role>
 <user>Fred</user>
 </administrator-role>

 <batchPersistence jobStoreRef="BatchDatabaseStore" />

 <databaseStore id="BatchDatabaseStore"
 createTables="false"
 dataSourceRef="batchDB" schema="JBATCH" tablePrefix="" />

 <jdbcDriver id="DB2T4" libraryRef="DB2T4LibRef" />

 <library id="DB2T4LibRef">
 <fileset dir="/shared/db21010/jdbc/classes/"
 includes="db2jcc4.jar db2jcc_license_cisuz.jar sqlj4.zip" />
 </library>

 <authData id="batchAlias" user="xxxxxx" password="xxxxxx" />

 <dataSource id="batchDB"
 containerAuthDataRef="batchAlias"
 type="javax.sql.XADataSource"
 jdbcDriverRef="DB2T4">
 <properties.db2.jcc
 serverName="wg31.washington.ibm.com"
 portNumber="9446"
 databaseName="WG31DB2"
 driverType="4" />
 </dataSource>

© 2017, IBM Corporation
Americas Advanced Technical Skills - 11 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

 <batchJmsDispatcher
 connectionFactoryRef="batchConnectionFactory"
 queueRef="batchJobSubmissionQueue" />

 <variable name="wmqJmsClient.rar.location"
 value="${server.config.dir}/wmq.jmsra.rar" />

 <wmqJmsClient startupRetryCount="999"
 startupRetryInterval="1000ms"
 reconnectionRetryCount="10"
 reconnectionRetryInterval="5m">
 </wmqJmsClient>

 <batchJmsEvents connectionFactoryRef="batchConnectionFactory" />

 <jmsConnectionFactory id="batchConnectionFactory"
 jndiName="jms/batch/connectionFactory">
 <properties.wmqJms
 hostName="wg31.washington.ibm.com"
 transportType="CLIENT"
 channel="SYSTEM.DEF.SVRCONN"
 port="1414"
 queueManager="MQS1">
 </properties.wmqJms>
 </jmsConnectionFactory>

 <jmsQueue id="batchJobSubmissionQueue"
 jndiName="jms/batch/jobSubmissionQueue">
 <properties.wmqJms baseQueueName="JSR.BATCH.QUEUE"
 priority="QDEF"
 baseQueueManagerName="MQS1">
 </properties.wmqJms>
 </jmsQueue>

 <zosLocalAdapters wolaGroup="LIBERTY"
 wolaName2="BATCH"
 wolaName3="MANAGER"/>

 <httpEndpoint id="defaultHttpEndpoint"
 host="*"
 httpPort="25080"
 httpsPort="25443" />

</server>

Notes:

• This sample uses "basic" security, which means RACF is not used for SSL certificates,
authentication, or application authorization. Liberty itself is doing that.

The <keyStore> element is auto-creating a self-signed SSL certificate.

The <basicRegistry> element is defining a user registry, which has one user: "Fred".

The <authorization-roles> element is creating one Java batch role of "batchAdmin"
and providing two users access:

Fred This is used when batchManager is the command line client, and Fred's ID
and password are supplied on the command. This grants Fred the authority
to submit jobs.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 12 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

EVERYONE This is used when batchManagerZos is the command line client and basic
security is in place. Long story short: basic security can't determine who the
ID is on the other side of the WOLA connection, so it can't determine whether
to let them in or not. The special-subect EVERYONE permits access. If we
were using SAF registry and SAF authorization, then we could properly
authorize the user (USER1) to the EJBROLE for access. But we're using
basic registry to keep that part simple, and thus this EVERYONE is needed.

The <administrator-role> is for the AdminCenter. This is granting Fred access to the
AdminCenter as an administrator.

• JDBC Type 4 is used for access to the Job Repository tables in DB2. The alias ID defined
must have SELECT, INSERT, UPDATE and DELETE authority.

• Two JMS functions are defined: <batchJmsDispatcher> to queue job submission
requests for Executor servers to pick up and run; and <batchJmsEvents> to publish events
to the MQ topic for subcribers to monitor4.

• We're showing CLIENT mode connection to MQ. If you use BINDINGS mode, you must add
the zosTransaction-1.0 feature to the feature list, as well as grant the server READ to the
BBG.AUTHMOD.BBGZSAFM.TXRRS SERVER profile. The Angel must be started prior to the
server starting.

• The <zosLocalAdapters> element defines the WOLA "three part name" that will be used
on the batchManagerZos command line client. This three part name also relates back to
the CBIND profile we saw illustrated in the RACF definitions.x

server.env
JAVA_HOME=/shared/java/J8.0_64

This is simply a pointer to the 64-bit Java the server was to use.

wmq.jmsra.rar

This is the JCA resource adapter supplied with IBM MQ. It was copied to this server
directory from the /<MQ_install_path>/java/lib/jca location. We point to this from
server.xml with:

<variable name="wmqJmsClient.rar.location"
 value="${server.config.dir}/wmq.jmsra.rar" />

We could have located this in a common location and shared one file between the servers.
The key point is that the server needed this RAR to do JMS work.

JSRDISP server JCL start procedure

This was copied from the install location:

/<install_path>/templates/zos/procs/bbgzsrv.jcl

and renamed to JSRDISP. Then it was customized:

//JSRDISP PROC PARMS='JSRDISP --clean'
//*--
//* This proc may be overwritten by fixpacks or iFixes.
//* You must copy to another location before customizing.
//*--
//* INSTDIR - the path to the WebSphere Liberty Profile install.
//* This path is used to find the product code and is
//* equivalent to the WLP_INSTALL_DIR environment variable
//* in the Unix shell.
//* USERDIR - the path to the WebSphere Liberty Profile user area.

4 The JSRMON server application is monitoring for events that only the Executor servers publish, so in theory we don't really need the
<batchJmsEvents> element here. But you may have a monitor that is interested in the events published by the Dispatcher server, so
we illustrate that here.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 13 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

//* This path is used to store shared and server specific
//* configuration information and is equivalent to the
//* WLP_USER_DIR environment variable in the Unix shell.
//*--
// SET INSTDIR='/shared/zWebSphere/Liberty/V16004'
// SET USERDIR='/shared/jsrhome'
//*--
//* Start the Liberty server
//*
//* WLPUDIR - PATH DD that points to the Liberty Profile's "user"
//* directory. If the DD is not allocated, the user
//* directory location defaults to the wlp/usr directory
//* in the install tree.
//* STDOUT - Destination for stdout (System.out)
//* STDERR - Destination for stderr (System.err)
//* MSGLOG - Destination for messages.log (optional)
//* STDENV - Initial Unix environment - read by the system. The
//* installation default and server specific server
//* environment files will be merged into this environment
//* before the JVM is launched.
//*--
//STEP1 EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,
// PARM='PGM &INSTDIR./lib/native/zos/s390x/bbgzsrv &PARMS'
//WLPUDIR DD PATH='&USERDIR.'
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//*MSGLOG DD SYSOUT=*
//*STDENV DD PATH='/etc/system.env',PATHOPTS=(ORDONLY)
//*STDOUT DD PATH='&ROOT/std.out',
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=SIRWXU
//*STDERR DD PATH='&ROOT/std.err',
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=SIRWXU
//* == */
//* PROPRIETARY-STATEMENT: */
//* Licensed Material - Property of IBM */
//* */
//* (C) Copyright IBM Corp. 2011, 2012 */
//* All Rights Reserved */
//* US Government Users Restricted Rights - Use, duplication or */
//* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.*/
//* == */

Notes:

• Since we are dedicating a proc to each server, we can code the server name on the PROC
statement PARMS=' ' . The –-clean is not strictly necessary; it simply tells the server to
clear cache prior to starting.

• INSTDIR= is set to the installation directory path.

• USERDIR= is set to the WLP_USER_DIR value for this server.

JSRZANGL JCL start procedure

This was copied from the install location:

/<install_path>/templates/zos/procs/bbgzangl.jcl

and renamed to JSRZANGL. Then it was customized.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 14 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

Note: We did a slightly "bad practice" thing here – by naming this "JSRZANGL," it implies this
Angel is exclusive to the "JSR" servers. In truth, an Angel can be shared5 between Liberty
z/OS servers being used for different things. We named this "JSRZANGL" so a listing of
active tasks with PREFIX JSR* would yield all five started tasks. In reality you would likely
leave the Angel name the default BBGZANGL, or some other generic name.

//JSRZANGL PROC PARMS='',COLD=N,NAME=''
//*--
// SET ROOT='/shared/zWebSphere/Liberty/V16004'
//*--
//* Start the Liberty angel process
//*--
//* This proc may be overwritten by fixpacks or iFixes.
//* You must copy to another location before customizing.
//*--
//STEP1 EXEC PGM=BPXBATA2,REGION=0M,TIME=NOLIMIT,
// PARM='PGM &ROOT./lib/native/zos/s390x/bbgzangl COLD=&COLD NAME=X
// &NAME &PARMS'
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//* == */
//* PROPRIETARY-STATEMENT: */
//* Licensed Material - Property of IBM */
//* */
//* (C) Copyright IBM Corp. 2011, 2012 */
//* All Rights Reserved */
//* US Government Users Restricted Rights - Use, duplication or */
//* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.*/
//* == */

First executor (JSREXEC1)

/dropins directory

The SleepyBatchletSample-1.0.war application was deployed to this server.

server.xml
<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

 <!-- Enable features -->
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>batch-1.0</feature>
 <feature>batchManagement-1.0</feature>
 <feature>appSecurity-2.0</feature>
 <feature>wmqJmsClient-2.0</feature>
 </featureManager>

 <keyStore id="defaultKeyStore" password="Liberty"/>

 <basicRegistry id="basic1" realm="jbatch">
 <user name="Fred" password="fredpwd" />
 </basicRegistry>

 <authorization-roles id="com.ibm.ws.batch">
 <security-role name="batchAdmin">

5 In 16.0.0.4 the ability to create multiple "named Angels" was introduced. This allows you to specify which Angel, among several, your
server will make use of. Look at the Angel JCL proc and the NAME='' parameter. That hints at this new "named Angel" function. A blank
value means it's an unnamed Angel. We chose to not illustrate "named Angels to maintain focus on the key Java Batch functionality.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 15 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

 <special-subject type="EVERYONE"/>
 <user name="Fred" />
 </security-role>
 </authorization-roles>

 <batchJmsEvents connectionFactoryRef="batchConnectionFactory" />

 <jmsConnectionFactory id="batchConnectionFactory"
 jndiName="jms/batch/connectionFactory">
 <properties.wmqJms
 hostName="wg31.washington.ibm.com"
 transportType="CLIENT"
 channel="SYSTEM.DEF.SVRCONN"
 port="1414"
 queueManager="MQS1">
 </properties.wmqJms>
 </jmsConnectionFactory>

 <batchPersistence jobStoreRef="BatchDatabaseStore" />

 <databaseStore id="BatchDatabaseStore"
 dataSourceRef="batchDB" schema="JBATCH" tablePrefix="" />

 <jdbcDriver id="DB2T4" libraryRef="DB2T4LibRef" />
 <library id="DB2T4LibRef">
 <fileset dir="/shared/db21010/jdbc/classes/"
 includes="db2jcc4.jar db2jcc_license_cisuz.jar sqlj4.zip" />
 </library>

 <authData id="batchAlias" user="xxxxxx" password="xxxxxx" />

 <dataSource id="batchDB"
 containerAuthDataRef="batchAlias"
 type="javax.sql.XADataSource"
 jdbcDriverRef="DB2T4">
 <properties.db2.jcc
 serverName="wg31.washington.ibm.com"
 portNumber="9446"
 databaseName="WG31DB2"
 driverType="4" />
 </dataSource>

 <batchJmsExecutor activationSpecRef="batchActivationSpec1"
 queueRef="batchJobSubmissionQueue"/>

 <variable name="wmqJmsClient.rar.location"
 value="${server.config.dir}/wmq.jmsra.rar"/>

 <wmqJmsClient startupRetryCount="999"
 startupRetryInterval="1000ms"
 reconnectionRetryCount="10"
 reconnectionRetryInterval="5m">
 </wmqJmsClient>

 <jmsActivationSpec id="batchActivationSpec1" >
 <properties.wmqJms
 destinationRef="batchJobSubmissionQueue"
 messageSelector="com_ibm_ws_batch_applicationName = 'SleepyBatchletSample-1.0'"
 maxPoolDepth="1"

© 2017, IBM Corporation
Americas Advanced Technical Skills - 16 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

 transportType="CLIENT"
 channel="SYSTEM.DEF.SVRCONN"
 destinationType="javax.jms.Queue"
 queueManager="MQS1"
 hostName="wg31.washington.ibm.com"
 port="1414">
 </properties.wmqJms>
 </jmsActivationSpec>

 <jmsQueue id="batchJobSubmissionQueue"
 jndiName="jms/batch/jobSubmissionQueue">
 <properties.wmqJms baseQueueName="JSR.BATCH.QUEUE"
 baseQueueManagerName="MQS1">
 </properties.wmqJms>
 </jmsQueue>

 <httpEndpoint id="defaultHttpEndpoint"
 host="*"
 httpPort="26080"
 httpsPort="26443" />

</server>

Notes:

• This server has no zosLocalAdapters-1.0 feature, and no adminCenter-1.0 feature.

• JDBC Type 4 is used for access to the Job Repository tables in DB2. The alias ID defined
must have SELECT, INSERT, UPDATE and DELETE authority.

• This has a <batchJmsExecutor> element rather than <batchJmsDispatcher>.

• This has a <jmsActivationSpec> element to define the queue on which to listen for job
submission messages.

• We're showing CLIENT mode connection to MQ. If you use BINDINGS mode, you must add
the zosTransaction-1.0 feature to the feature list, as well as grant the server READ to the
BBG.AUTHMOD.BBGZSAFM.TXRRS SERVER profile. The Angel must be started prior to the
server starting.

• Notice the messageSelector= property. This defines what messages to pick up. In this
example it will only pick up job submissions messages for the SleepyBatchlet application.

• The HTTP ports are unique from other servers.

server.env
JAVA_HOME=/shared/java/J8.0_64

This is simply a pointer to the 64-bit Java the server was to use. It's the exact same content
as seen in the server.env for the other servers.

wmq.jmsra.rar

This is the JCA resource adapter supplied with IBM MQ. It was copied to this server
directory from the /<MQ_install_path>/java/lib/jca location. We point to this from
server.xml with:

<variable name="wmqJmsClient.rar.location"
 value="${server.config.dir}/wmq.jmsra.rar" />

We could have located this in a common location and shared one file between the servers.
The key point is that the server needed this RAR to do JMS work.

JSREXEC1 server JCL start procedure

This was copied from the install location:
© 2017, IBM Corporation
Americas Advanced Technical Skills - 17 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

/<install_path>/templates/zos/procs/bbgzsrv.jcl

and renamed to JSREXEC1. Then it was customized:

//JSREXEC1 PROC PARMS='JSREXEC1 --clean'
//*--
//* This proc may be overwritten by fixpacks or iFixes.
//* You must copy to another location before customizing.
//*--
//* INSTDIR - the path to the WebSphere Liberty Profile install.
//* This path is used to find the product code and is
//* equivalent to the WLP_INSTALL_DIR environment variable
//* in the Unix shell.
//* USERDIR - the path to the WebSphere Liberty Profile user area.
//* This path is used to store shared and server specific
//* configuration information and is equivalent to the
//* WLP_USER_DIR environment variable in the Unix shell.
//*--
// SET INSTDIR='/shared/zWebSphere/Liberty/V16004'
// SET USERDIR='/shared/jsrhome'
//*--
//* Start the Liberty server
//*
//* WLPUDIR - PATH DD that points to the Liberty Profile's "user"
//* directory. If the DD is not allocated, the user
//* directory location defaults to the wlp/usr directory
//* in the install tree.
//* STDOUT - Destination for stdout (System.out)
//* STDERR - Destination for stderr (System.err)
//* MSGLOG - Destination for messages.log (optional)
//* STDENV - Initial Unix environment - read by the system. The
//* installation default and server specific server
//* environment files will be merged into this environment
//* before the JVM is launched.
//*--
//STEP1 EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,
// PARM='PGM &INSTDIR./lib/native/zos/s390x/bbgzsrv &PARMS'
//WLPUDIR DD PATH='&USERDIR.'
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//*MSGLOG DD SYSOUT=*
//*STDENV DD PATH='/etc/system.env',PATHOPTS=(ORDONLY)
//*STDOUT DD PATH='&ROOT/std.out',
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=SIRWXU
//*STDERR DD PATH='&ROOT/std.err',
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=SIRWXU
//* == */
//* PROPRIETARY-STATEMENT: */
//* Licensed Material - Property of IBM */
//* */
//* (C) Copyright IBM Corp. 2011, 2012 */
//* All Rights Reserved */
//* US Government Users Restricted Rights - Use, duplication or */
//* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.*/
//* == */

© 2017, IBM Corporation
Americas Advanced Technical Skills - 18 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

Notes:

• Since we are dedicating a proc to each server, we can code the server name on the PROC
statement PARMS=' ' . The –-clean is not strictly necessary; it simply tells the server to
clear cache prior to starting.

• INSTDIR= is set to the installation directory path.

• USERDIR= is set to the WLP_USER_DIR value for this server.

Second executor (JSREXEC2)

/dropins directory

Two applications were deployed into this server:

• SleepyBatchletSample-1.0.war

• BonusPayout-1.0.war

server.xml
<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

 <!-- Enable features -->
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>batch-1.0</feature>
 <feature>batchManagement-1.0</feature>
 <feature>wmqJmsClient-2.0</feature>
 <feature>appSecurity-1.0</feature>
 </featureManager>

 <keyStore id="defaultKeyStore" password="Liberty"/>

 <basicRegistry id="basic1" realm="jbatch">
 <user name="Fred" password="fredpwd" />
 </basicRegistry>

 <authorization-roles id="com.ibm.ws.batch">
 <security-role name="batchAdmin">
 <special-subject type="EVERYONE"/>
 <user name="Fred" />
 </security-role>
 </authorization-roles>

 <batchJmsEvents connectionFactoryRef="batchConnectionFactory" />

 <jmsConnectionFactory id="batchConnectionFactory"
 jndiName="jms/batch/connectionFactory">
 <properties.wmqJms
 hostName="wg31.washington.ibm.com"
 transportType="CLIENT"
 channel="SYSTEM.DEF.SVRCONN"
 port="1414"
 queueManager="MQS1">
 </properties.wmqJms>
 </jmsConnectionFactory>

 <batchPersistence jobStoreRef="BatchDatabaseStore" />

 <databaseStore id="BatchDatabaseStore"
 dataSourceRef="batchDB" schema="JBATCH" tablePrefix="" />

© 2017, IBM Corporation
Americas Advanced Technical Skills - 19 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

 <jdbcDriver id="DB2T4" libraryRef="DB2T4LibRef" />

 <library id="DB2T4LibRef">
 <fileset dir="/shared/db21010/jdbc/classes/"
 includes="db2jcc4.jar db2jcc_license_cisuz.jar sqlj4.zip" />
 </library>

 <authData id="batchAlias" user="xxxxxx" password="xxxxxx" />

 <dataSource id="batchDB"
 containerAuthDataRef="batchAlias"
 type="javax.sql.XADataSource"
 jdbcDriverRef="DB2T4">
 <properties.db2.jcc
 serverName="wg31.washington.ibm.com"
 portNumber="9446"
 databaseName="WG31DB2"
 driverType="4" />
 </dataSource>

 <authData id="bonusAlias" user="xxxxxx" password="xxxxxx" />

 <dataSource id="bonusDB" jndiName="jdbc/bonus"
 containerAuthDataRef="bonusAlias"
 type="javax.sql.XADataSource"
 jdbcDriverRef="DB2T4">
 <properties.db2.jcc
 serverName="wg31.washington.ibm.com"
 portNumber="9446"
 databaseName="WG31DB2"
 driverType="4" />
 </dataSource>

 <batchJmsExecutor activationSpecRef="batchActivationSpec"
 queueRef="batchJobSubmissionQueue"/>

 <variable name="wmqJmsClient.rar.location"
 value="${server.config.dir}/wmq.jmsra.rar"/>

 <wmqJmsClient startupRetryCount="999"
 startupRetryInterval="1000ms"
 reconnectionRetryCount="10"
 reconnectionRetryInterval="5m">
 </wmqJmsClient>

 <jmsActivationSpec id="batchActivationSpec" >
 <properties.wmqJms
 destinationRef="batchJobSubmissionQueue"
 messageSelector="com_ibm_ws_batch_applicationName = 'SleepyBatchletSample-1.0'
 OR com_ibm_ws_batch_applicationName = 'BonusPayout-1.0'"
 transportType="CLIENT"
 channel="SYSTEM.DEF.SVRCONN"
 destinationType="javax.jms.Queue"
 queueManager="MQS1"
 hostName="wg31.washington.ibm.com"
 port="1414">
 </properties.wmqJms>
 </jmsActivationSpec>

© 2017, IBM Corporation
Americas Advanced Technical Skills - 20 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

 <jmsQueue id="batchJobSubmissionQueue"
 jndiName="jms/batch/jobSubmissionQueue">
 <properties.wmqJms baseQueueName="JSR.BATCH.QUEUE"
 baseQueueManagerName="MQS1">
 </properties.wmqJms>
 </jmsQueue>

 <httpEndpoint id="defaultHttpEndpoint"
 host="*"
 httpPort="27080"
 httpsPort="27443" />

</server>

Notes:

• We're showing CLIENT mode connection to MQ. If you use BINDINGS mode, you must add
the zosTransaction-1.0 feature to the feature list, as well as grant the server READ to the
BBG.AUTHMOD.BBGZSAFM.TXRRS SERVER profile. The Angel must be started prior to the
server starting.

• This has an additional JDBC Type 4 data source which is used by the BonusPayout
application.

• The JMS activation specification element has a conditional "or" operator that allows it to pick
up a SleepyBatchlet or BonusPayout application job submission.

server.env
JAVA_HOME=/shared/java/J8.0_64

This is simply a pointer to the 64-bit Java the server was to use. It's the exact same content
as seen in the server.env for the other servers.

wmq.jmsra.rar

This is the JCA resource adapter supplied with IBM MQ. It was copied to this server
directory from the /<MQ_install_path>/java/lib/jca location. We point to this from
server.xml with:

<variable name="wmqJmsClient.rar.location"
 value="${server.config.dir}/wmq.jmsra.rar" />

We could have located this in a common location and shared one file between the servers.
The key point is that the server needed this RAR to do JMS work.

JSREXEC2 server JCL start procedure

This was copied from the install location:

/<install_path>/templates/zos/procs/bbgzsrv.jcl

and renamed to JSREXEC2. Then it was customized:

//JSREXEC2 PROC PARMS='JSREXEC2 --clean'
//*--
//* This proc may be overwritten by fixpacks or iFixes.
//* You must copy to another location before customizing.
//*--
//* INSTDIR - the path to the WebSphere Liberty Profile install.
//* This path is used to find the product code and is
//* equivalent to the WLP_INSTALL_DIR environment variable
//* in the Unix shell.
//* USERDIR - the path to the WebSphere Liberty Profile user area.
//* This path is used to store shared and server specific
//* configuration information and is equivalent to the

© 2017, IBM Corporation
Americas Advanced Technical Skills - 21 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

//* WLP_USER_DIR environment variable in the Unix shell.
//*--
// SET INSTDIR='/shared/zWebSphere/Liberty/V16004'
// SET USERDIR='/shared/jsrhome'
//*--
//* Start the Liberty server
//*
//* WLPUDIR - PATH DD that points to the Liberty Profile's "user"
//* directory. If the DD is not allocated, the user
//* directory location defaults to the wlp/usr directory
//* in the install tree.
//* STDOUT - Destination for stdout (System.out)
//* STDERR - Destination for stderr (System.err)
//* MSGLOG - Destination for messages.log (optional)
//* STDENV - Initial Unix environment - read by the system. The
//* installation default and server specific server
//* environment files will be merged into this environment
//* before the JVM is launched.
//*--
//STEP1 EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,
// PARM='PGM &INSTDIR./lib/native/zos/s390x/bbgzsrv &PARMS'
//WLPUDIR DD PATH='&USERDIR.'
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//*MSGLOG DD SYSOUT=*
//*STDENV DD PATH='/etc/system.env',PATHOPTS=(ORDONLY)
//*STDOUT DD PATH='&ROOT/std.out',
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=SIRWXU
//*STDERR DD PATH='&ROOT/std.err',
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=SIRWXU
//* == */
//* PROPRIETARY-STATEMENT: */
//* Licensed Material - Property of IBM */
//* */
//* (C) Copyright IBM Corp. 2011, 2012 */
//* All Rights Reserved */
//* US Government Users Restricted Rights - Use, duplication or */
//* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.*/
//* == */

Notes:

• Since we are dedicating a proc to each server, we can code the server name on the PROC
statement PARMS=' ' . The –-clean is not strictly necessary; it simply tells the server to
clear cache prior to starting.

• INSTDIR= is set to the installation directory path.

• USERDIR= is set to the WLP_USER_DIR value for this server.

Bonus application account table DDL

The BonusPayout-1.0.war application requires a single table for its processing. The
DDL for this table was the following:

CREATE TABLE BONUSDB.ACCOUNT(
 ACCTNUM INTEGER NOT NULL,
 BALANCE INTEGER NOT NULL,
 INSTANCEID BIGINT NOT NULL,
 ACCTCODE VARCHAR(30),

© 2017, IBM Corporation
Americas Advanced Technical Skills - 22 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

 CONSTRAINT ACCOUNT_PK PRIMARY KEY (ACCTNUM,INSTANCEID));

CREATE UNIQUE INDEX ACCT_IDX ON BONUSDB.ACCOUNT(ACCTNUM,INSTANCEID);

COMMIT;

Notes:

• This DDL listing does not include any other DB2 definitions you may require, such as
STOGROUP, or GRANT. Review this with your DB administrator and implement according
to your local policies.

• The ID that accesses this table must have SELECT, INSERT and UPDATE authority at a
minimum.

Monitor server (JSRMON)

This server hosts an MDB application that listens on the batch event topic that the servers are
publishing to. It is watching for the job log event, and will produce a folder and file for each job
log that it sees.

/dropins directory

The application JobLogEventsDirCreator-1.0.war was deployed in this server. This
was pulled fromt his Git location:
https://github.com/WASdev/sample.batch.joblogevents

server.xml
<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

 <!-- Enable features -->
 <featureManager>
 <feature>batch-1.0</feature>
 <feature>batchManagement-1.0</feature>
 <feature>jsonp-1.0</feature>
 <feature>servlet-3.1</feature>
 <feature>wmqJmsClient-2.0</feature>
 </featureManager>

 <variable name="wmqJmsClient.rar.location"
 value="${server.config.dir}/wmq.jmsra.rar" />

 <wmqJmsClient startupRetryCount="999"
 startupRetryInterval="1000ms"
 reconnectionRetryCount="10"
 reconnectionRetryInterval="5m">
 </wmqJmsClient>

 <jmsTopic id="JobLogEventTopic"
 jndiName="jms/batch/batchJobTopic">
 <properties.wmqJms
 baseTopicName="batch/jobs/execution/jobLogPart" />
 </jmsTopic>

 <jmsActivationSpec id="JobLogEventsDirCreator-1.0/JobLogEventsSubscriber">
 <properties.wmqJms
 destinationRef="JobLogEventTopic"
 destinationType="javax.jms.Topic"
 transportType="CLIENT"
 channel="SYSTEM.DEF.SVRCONN"
 queueManager="MQS1"

© 2017, IBM Corporation
Americas Advanced Technical Skills - 23 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

https://github.com/WASdev/sample.batch.joblogevents

WP102544 – Sample Configuration

 hostName="wg31.washington.ibm.com"
 port="1414" />
 </jmsActivationSpec>

 <httpEndpoint id="defaultHttpEndpoint"
 host="*"
 httpPort="28080"
 httpsPort="28443" />

</server>

Notes:

• The application requires the jsonp-1.0 feature to operate.

• The baseTopicName= attribute specifies which topic leaf to listen on. The application is
written to act upon the "jobLogPart" events only, so that's what we specify here6.

• We're showing CLIENT mode connection to MQ. If you use BINDINGS mode, you must add
the zosTransaction-1.0 feature to the feature list, as well as grant the server READ to the
BBG.AUTHMOD.BBGZSAFM.TXRRS SERVER profile. The Angel must be started prior to the
server starting.

server.env
JAVA_HOME=/shared/java/J8.0_64

This is simply a pointer to the 64-bit Java the server was to use. It's the exact same content
as seen in the server.env for the other servers.

wmq.jmsra.rar

This is the JCA resource adapter supplied with IBM MQ. It was copied to this server
directory from the /<MQ_install_path>/java/lib/jca location. We point to this from
server.xml with:

<variable name="wmqJmsClient.rar.location"
 value="${server.config.dir}/wmq.jmsra.rar" />

We could have located this in a common location and shared one file between the servers.
The key point is that the server needed this RAR to do JMS work.

JSRMON server JCL start procedure

This was copied from the install location:

/<install_path>/templates/zos/procs/bbgzsrv.jcl

and renamed to JSRMON. Then it was customized:

//JSRMON PROC PARMS='JSRMON --clean'
//*--
//* This proc may be overwritten by fixpacks or iFixes.
//* You must copy to another location before customizing.
//*--
//* INSTDIR - the path to the WebSphere Liberty Profile install.
//* This path is used to find the product code and is
//* equivalent to the WLP_INSTALL_DIR environment variable
//* in the Unix shell.
//* USERDIR - the path to the WebSphere Liberty Profile user area.
//* This path is used to store shared and server specific
//* configuration information and is equivalent to the
//* WLP_USER_DIR environment variable in the Unix shell.
//*--

6 We could specify the topic root of batch/# and it would listen on everything. But the application would only act upon events it sees under
the batch/jobs/execution/jobLogPart leaf.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 24 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

// SET INSTDIR='/shared/zWebSphere/Liberty/V16004'
// SET USERDIR='/shared/jsrhome'
//*--
//* Start the Liberty server
//*
//* WLPUDIR - PATH DD that points to the Liberty Profile's "user"
//* directory. If the DD is not allocated, the user
//* directory location defaults to the wlp/usr directory
//* in the install tree.
//* STDOUT - Destination for stdout (System.out)
//* STDERR - Destination for stderr (System.err)
//* MSGLOG - Destination for messages.log (optional)
//* STDENV - Initial Unix environment - read by the system. The
//* installation default and server specific server
//* environment files will be merged into this environment
//* before the JVM is launched.
//*--
//STEP1 EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,
// PARM='PGM &INSTDIR./lib/native/zos/s390x/bbgzsrv &PARMS'
//WLPUDIR DD PATH='&USERDIR.'
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//*MSGLOG DD SYSOUT=*
//*STDENV DD PATH='/etc/system.env',PATHOPTS=(ORDONLY)
//*STDOUT DD PATH='&ROOT/std.out',
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=SIRWXU
//*STDERR DD PATH='&ROOT/std.err',
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=SIRWXU
//* == */
//* PROPRIETARY-STATEMENT: */
//* Licensed Material - Property of IBM */
//* */
//* (C) Copyright IBM Corp. 2011, 2012 */
//* All Rights Reserved */
//* US Government Users Restricted Rights - Use, duplication or */
//* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.*/
//* == */

Notes:

• Since we are dedicating a proc to each server, we can code the server name on the PROC
statement PARMS=' ' . The –-clean is not strictly necessary; it simply tells the server to
clear cache prior to starting.

• INSTDIR= is set to the installation directory path.

• USERDIR= is set to the WLP_USER_DIR value for this server.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 25 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

Operation Illustration
Given the configuration illustrated above, in this section we will illustrate basic operations of this
environment, including job submission and event monitoring.

Start servers

The servers were started in this order:

Server START7 Notes

/S JSRZANGL In terms of sequence, this is the important point: the Angel process must be up before
any Liberty z/OS server requiring the Angel is started.

/S JSRDISP

These can be started in any order.
/S JSREXEC1

/S JSREXEC2

/S JSRMON

A listing of the jobs showed:

Only one server required the Angel process, and that was JSRDISP. The requirement for the
Angel was driven by the use of batchManagerZos and WOLA8. A look in the messages.log
for that server showed:

The "is available" messages validated access to the WOLA authorized service was present.

A bit further down in the log file we saw:
CWWKB0501I: The WebSphere Optimized Local Adapter channel registered with the
Liberty profile server using the following name: LIBERTY BATCH MANAGER

That verified the "three part name" we defined in the server.xml was in effect. When we
used batchManagerZos to submit jobs that three-part name was important to know.

Submit using batchManager

The batchManager command line client uses REST to submit jobs to the dispatcher server. It
can be run from any shell environment. We will illustrate it being run from SSH using the
PuTTY client tool.

7 Because we had a separate JCL proc for each server with the server name coded on the PARMS= on the PROC statement, we could start
each server with /S <proc>. If we were using a common proc, then /S <proc>,PARMS='<server_name>'

8 The batchManager client is network based and does not use WOLA. That does not require the Angel Process.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 26 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

We logged into PuTTY using the USER1 ID. Recall that USER1 was the ID we granted READ to
for WOLA-related CBIND profile. That is what gives USER1 the authority to issue the
batchManagerZos command to connect with WOLA into the dispatcher server9.

We set the following environment variables:

export JAVA_HOME=/shared/java/J8.0_64

The batchManager command line client is Java-based, and this provides the shell
knowledge of the location for the 64-bit Java installation.

The batchManagerZos command line client is not Java-based, so JAVA_HOME is not
necessary for that.

export JVM_ARGS="-Djavax.net.ssl.trustStore=/u/user1/key.jks"

We explained earlier that the design of this document was to use "basic" security so focus
could be more clearly maintained on the key Java batch elements. If you look back in the
server.xml examples, you'll see the "basic" security defined with the <keyStore>,
<basicRegistry>, and <authorization-roles> elements. This export of JVM_ARGS
is related to the <keyStore> basic security element.

The batchManager REST-based command line client is going to use the HTTPS ("SSL")
port of the Liberty z/OS server. That means the client must have access to the file that
contains the certificate used to validate the server certificate that is presented.

The "basic" SSL setup with <keyStore> creates a simple, self-signed certificate. It stores
that certificate in a file called key.jks, which is located under the /resources/security
directory for the server. To make SSL work we need to give the batchManager client
access to that file.

The JVM_ARGS you see above is providing the batchManager client access to the file, but
that file is not located under the server's /resources/security directory. We copied
that file to the /u/user1 directory and gave it permissions 777.

Why? Because it was easier than granting the USER1 ID read access all the way down the
server's path to the key.jks file. The server's directory structure was owned by the
JSRSERV ID, and the USER1 ID was considered "other" with no permissions. To accomplish
the setup of SSL it was easier to simply copy the key.jks file to some location easily
accessible by the USER1 ID.

In "the real world" you would not do this. In a real-world setting you would not use "basic"
security, you would use SAF-based keyrings for the holding of certificates that have been
properly signed by a valid Certificate Authority. Here we are demonstrating functionality,
and copying out the key.jks file was the easy way to accomplish that.

We were ready to submit our first job. We changed directories to:

cd /shared/zWebSphere/Liberty/V16004/bin

That's where the batchManager command line client resided.

We submitted the following command10:
./batchManager submit --batchManager=localhost:25443

--user=Fred --password=fredpwd --applicationName=SleepyBatchletSample-1.0
--jobXMLName=sleepy-batchlet.xml --wait

We saw11:

9 If we were illustrating just batchManager (the REST-based command line client), then the ID we logged in with would not matter as much.
10 That is a one-line command. It is broken across lines here.
11 The instance and execution number here was 56. We ran a lot of different tests prior to capturing this output for the document.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 27 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

[2017/01/24 12:07:41.110 -0500] CWWKY0101I: Job with instance ID 56 has been
submitted.

[2017/01/24 12:07:41.112 -0500] CWWKY0106I: JobInstance:
{"jobName":"","instanceId":56,"appName":"SleepyBatchletSample-
1.0#SleepyBatchletSample-
1.0.war","submitter":"Fred","batchStatus":"STARTING","jobXMLName":"sleepy-
batchlet.xml","instanceState":"JMS_QUEUED","lastUpdatedTime":"2017/01/24
17:07:37.744 +0000"}

[2017/01/24 12:08:11.261 -0500] CWWKY0105I: Job with instance ID 56 has
finished. Batch status: COMPLETED. Exit status: COMPLETED

[2017/01/24 12:08:11.261 -0500] CWWKY0107I: JobExecution:{"jobName":"sleepy-
batchlet","executionId":56,"instanceId":56,"batchStatus":"COMPLETED","exitSta
tus":"COMPLETED","createTime":"2017/01/24 17:07:37.686
+0000","endTime":"2017/01/24 17:07:58.312
+0000","lastUpdatedTime":"2017/01/24 17:07:58.312
+0000","startTime":"2017/01/24 17:07:42.966 +0000","jobParameters":
{},"restUrl":"https://192.168.17.219:27443/ibm/api/batch","serverId":"localho
st//shared/jsrhome/JSREXEC2","logpath":"/shared/jsrhome/servers/JSREXEC2/logs
/joblogs/sleepy-batchlet/2017-01-
24/instance.56/execution.56/","stepExecutions":
[{"stepExecutionId":78,"stepName":"step1","batchStatus":"COMPLETED","exitStat
us":"SleepyBatchlet:i=15;stopRequested=false","stepExecution":"https://localh
ost:25443/ibm/api/batch/jobexecutions/56/stepexecutions/step1"}]}

USER1:/shared/zWebSphere/Liberty/V16004/bin:>

It ended up being executed in the JSREXEC2 server even though it was deployed in both
JSREXEC1 and JSREXEC2. It just so happened JSREXEC2 picked it up first.

Next, we looked under the JSRMON server directory where the monitoring MDB application
writes its output. We saw this:
/shared/jsrhome/servers/JSRMON/JobLogEvents

/sleepy-batchlet/2017-01-24/instance.56/execution.56/part1.log

The contents of the part1.log file were:

[1/24/17 17:07:42:965 GMT] com.ibm.ws.batch.JobLogger
==
Started invoking execution for a job
 JobInstance id = 56
 JobExecution id = 56
 Job Name = sleepy-batchlet
 Job Parameters = {}
==

[1/24/17 17:07:42:997 GMT] com.ibm.ws.batch.JobLogger
CWWKY0009I: Job sleepy-batchlet started for job instance 56 and job execution
56.
[1/24/17 17:07:43:204 GMT] com.ibm.ws.batch.JobLogger
==
For step name = step1
 New top-level step execution id = 78
==

[1/24/17 17:07:43:247 GMT] com.ibm.ws.batch.JobLogger
CWWKY0018I: Step step1 started for job instance 56 and job execution 56.
[1/24/17 17:07:58:311 GMT] com.ibm.ws.batch.JobLogger
CWWKY0020I: Step step1 ended with batch status COMPLETED and exit status
SleepyBatchlet:i=15;stopRequested=false for job instance 56 and job execution
56.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 28 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

[1/24/17 17:07:58:335 GMT] com.ibm.ws.batch.JobLogger
CWWKY0010I: Job sleepy-batchlet ended with batch status COMPLETED and exit
status COMPLETED for job instance 56 and job execution 56.
[1/24/17 17:07:58:336 GMT] com.ibm.ws.batch.JobLogger
==
Completed invoking execution for a job
 JobInstance id = 56
 JobExecution id = 56
 Job Name = sleepy-batchlet
 Job Parameters = {}
 Job Batch Status = COMPLETED, Job Exit Status = COMPLETED
==

The presence of that file indicated that the JSREXEC2 server published its events to the topic,
and the MDB application running in the JSRMON server successfully subscribed and pulled the
message from the topic and wrote it to the file system12.

Next, we submitted the BonusPayout job submission. This was deployed in JSREXEC2 only,
so we expect it to run there. The command was:
./batchManager submit --batchManager=localhost:25443

--user=Fred --password=fredpwd --applicationName=BonusPayout-1.0
--jobXMLName=SimpleBonusPayoutJob.xml --jobParameter=dsJNDI=jdbc/bonus

--jobParameter=tableName=BONUSDB.ACCOUNT --wait

We saw:
[2017/01/24 12:21:31.358 -0500] CWWKY0101I: Job with instance ID 57 has been
submitted.

[2017/01/24 12:21:31.361 -0500] CWWKY0106I: JobInstance:
{"jobName":"","instanceId":57,"appName":"BonusPayout-1.0#BonusPayout-
1.0.war","submitter":"Fred","batchStatus":"STARTING","jobXMLName":"SimpleBonu
sPayoutJob.xml","instanceState":"JMS_CONSUMED","lastUpdatedTime":"2017/01/24
17:21:31.127 +0000"}

[2017/01/24 12:22:01.565 -0500] CWWKY0105I: Job with instance ID 57 has
finished. Batch status: COMPLETED. Exit status: COMPLETED

[2017/01/24 12:22:01.566 -0500] CWWKY0107I: JobExecution:
{"jobName":"SimpleBonusPayoutJob","executionId":57,"instanceId":57,"batchStat
us":"COMPLETED","exitStatus":"COMPLETED","createTime":"2017/01/24
17:21:31.062 +0000","endTime":"2017/01/24 17:21:36.625
+0000","lastUpdatedTime":"2017/01/24 17:21:36.625
+0000","startTime":"2017/01/24 17:21:31.466 +0000","jobParameters":
{"tableName":"BONUSDB.ACCOUNT","dsJNDI":"jdbc/bonus"},"restUrl":"https://192.
168.17.219:27443/ibm/api/batch","serverId":"localhost//shared/jsrhome/JSREXEC
2","logpath":"/shared/jsrhome/servers/JSREXEC2/logs/joblogs/SimpleBonusPayout
Job/2017-01-24/instance.57/execution.57/","stepExecutions":
[{"stepExecutionId":79,"stepName":"generate","batchStatus":"COMPLETED","exitS
tatus":"COMPLETED","stepExecution":"https://localhost:25443/ibm/api/batch/job
executions/57/stepexecutions/generate"},
{"stepExecutionId":80,"stepName":"addBonus","batchStatus":"COMPLETED","exitSt
atus":"COMPLETED","stepExecution":"https://localhost:25443/ibm/api/batch/jobe
xecutions/57/stepexecutions/addBonus"}]}

USER1:/shared/zWebSphere/Liberty/V16004/bin:>

12 The BonusPayout application, which we submitted next, was deployed in JSREXEC2 only, so we knew that job would run there. So in a
sense it's unfortunate the same server (JSREXEC2) picked up this SleepyBatchlet job for it means in this illustration we have not validated
JSREXEC1 is publishing its job events. But from previous tests we saw that it was, so we knew it was working. If you're running this on
your system, make sure to validate all your servers successfully publish events. In this example, shutting down JSREXEC2 and submitting
SleepyBatchlet would have insured it ran in JSREXEC1.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 29 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

Back to the JSRMON server directory to look at the job log output from the monitoring
application. We saw:
/shared/jsrhome/servers/JSRMON/JobLogEvents

/SimpleBonusPayoutJob/2017-01-24/instance.57/execution.57/part1.log

The contents of the part1.log file were:

[1/24/17 17:21:31:465 GMT] com.ibm.ws.batch.JobLogger
==
Started invoking execution for a job
 JobInstance id = 57
 JobExecution id = 57
 Job Name = SimpleBonusPayoutJob
 Job Parameters = {tableName=BONUSDB.ACCOUNT, dsJNDI=jdbc/bonus}
==

[1/24/17 17:21:31:483 GMT] com.ibm.ws.batch.JobLogger
CWWKY0009I: Job SimpleBonusPayoutJob started for job instance 57 and job
execution 57.
[1/24/17 17:21:31:504 GMT] com.ibm.ws.batch.JobLogger
==
For step name = generate
 New top-level step execution id = 79
==

[1/24/17 17:21:31:566 GMT] com.ibm.ws.batch.JobLogger
CWWKY0018I: Step generate started for job instance 57 and job execution 57.
[1/24/17 17:21:31:751 GMT] BonusPayout
In GenerateDataBatchlet, using account code = CHK
[1/24/17 17:21:31:782 GMT] com.ibm.ws.batch.JobLogger
CWWKY0020I: Step generate ended with batch status COMPLETED and exit status
COMPLETED for job instance 57 and job execution 57.
[1/24/17 17:21:31:858 GMT] com.ibm.ws.batch.JobLogger
==
For step name = addBonus
 New top-level step execution id = 80
==

[1/24/17 17:21:31:876 GMT] com.ibm.ws.batch.JobLogger
CWWKY0018I: Step addBonus started for job instance 57 and job execution 57.
[1/24/17 17:21:36:625 GMT] com.ibm.ws.batch.JobLogger
CWWKY0020I: Step addBonus ended with batch status COMPLETED and exit status
COMPLETED for job instance 57 and job execution 57.
[1/24/17 17:21:36:639 GMT] com.ibm.ws.batch.JobLogger
CWWKY0010I: Job SimpleBonusPayoutJob ended with batch status COMPLETED and
exit status COMPLETED for job instance 57 and job execution 57.
[1/24/17 17:21:36:640 GMT] com.ibm.ws.batch.JobLogger
==
Completed invoking execution for a job
 JobInstance id = 57
 JobExecution id = 57
 Job Name = SimpleBonusPayoutJob
 Job Parameters = {tableName=BONUSDB.ACCOUNT, dsJNDI=jdbc/bonus}
 Job Batch Status = COMPLETED, Job Exit Status = COMPLETED
==

Submit using batchManagerZos

This is a different command line utility, so the job submission syntax is different. But every other
part of the infrastructure we illustrated remains the same.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 30 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

We changed directories to:

cd /shared/zWebSphere/Liberty/V16004/lib/native/zos/s390x

That's where the batchManagerZos client program resided.

We submitted the SleepyBatchlet job:
./batchManagerZos submit --batchManager=LIBERTY+BATCH+MANAGER

--applicationName=SleepyBatchletSample-1.0 --jobXMLName=sleepy-batchlet.xml --wait

Note: There is no ID or password specified on that command. The ID was the ID we logged into the
shell with, which was USER1. The CBIND profile based on the three part name we used was
checked to see if USER1 had READ, which it did. Therefore, this command was allowed.

We saw13:
INFO: CWWKY0101I: Job with instance ID 58 has been submitted.

INFO: CWWKY0106I: JobInstance:
{"jobName":"","instanceId":58,"appName":"SleepyBatchletSample-
1.0#SleepyBatchletSample-
1.0.war","submitter":"","batchStatus":"STARTING","jobXMLName":"sleepy-
batchlet.xml","instanceState":"JMS_CONSUMED","lastUpdatedTime":"2017/01/24
17:37:00.177 +0000"}

INFO: CWWKY0105I: Job with instance ID 58 has finished. Batch status:
COMPLETED. Exit status: COMPLETED

INFO: CWWKY0107I: JobExecution:{"jobName":"sleepy-
batchlet","executionId":58,"instanceId":58,"batchStatus":"COMPLETED","exitSta
tus":"COMPLETED","createTime":"2017/01/24 17:37:00.117
+0000","endTime":"2017/01/24 17:37:15.416
+0000","lastUpdatedTime":"2017/01/24 17:37:15.416
+0000","startTime":"2017/01/24 17:37:00.325 +0000","jobParameters":
{"com.ibm.ws.batch.submitter.jobId":"STC00304","com.ibm.ws.batch.submitter.jo
bName":"USER12
"},"restUrl":"https://192.168.17.219:27443/ibm/api/batch","serverId":"localho
st//shared/jsrhome/JSREXEC2","logpath":"/shared/jsrhome/servers/JSREXEC2/logs
/joblogs/sleepy-batchlet/2017-01-
24/instance.58/execution.58/","stepExecutions":
[{"stepExecutionId":81,"stepName":"step1","batchStatus":"COMPLETED","exitStat
us":"SleepyBatchlet:i=15;stopRequested=false"}]}

USER1:/shared/zWebSphere/Liberty/V16004/lib/native/zos/s390x:>

We looked under the JSRMON server directory and saw that there was a directory structure for
this instance of the job. The contents of the part1.log file was essentially the same as we
showed for the batchManager example. So we we won't show it again here.

Next, we submitted the BonusPayout job with this command:
./batchManagerZos submit --batchManager=LIBERTY+BATCH+MANAGER

--applicationName=BonusPayout-1.0 --jobXMLName=SimpleBonusPayoutJob.xml
--jobParameter=dsJNDI=jdbc/bonus

--jobParameter=tableName=BONUSDB.ACCOUNT --wait

We saw:
INFO: CWWKY0101I: Job with instance ID 59 has been submitted.

INFO: CWWKY0106I: JobInstance:
{"jobName":"","instanceId":59,"appName":"BonusPayout-1.0#BonusPayout-

13 It ran in JSREXEC2 again, which means in this case we still have not seen JSREXEC1 run a job and publish events. As we mentioned
earlier, in other tests we did see it work, so we know our infrastructure as okay. If you wanted to prove the JSREXEC1 server was working
properly you would stop the JSREXEC2 server and re-submit SleepyBatchlet. With only JSREXEC1 listening on the submission queue it
would pick up the job and run it.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 31 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

1.0.war","submitter":"","batchStatus":"STARTING","jobXMLName":"SimpleBonusPay
outJob.xml","instanceState":"JMS_CONSUMED","lastUpdatedTime":"2017/01/24
17:46:48.125 +0000"}

INFO: CWWKY0105I: Job with instance ID 59 has finished. Batch status:
COMPLETED. Exit status: COMPLETED

INFO: CWWKY0107I: JobExecution:
{"jobName":"SimpleBonusPayoutJob","executionId":59,"instanceId":59,"batchStat
us":"COMPLETED","exitStatus":"COMPLETED","createTime":"2017/01/24
17:46:48.067 +0000","endTime":"2017/01/24 17:46:50.059
+0000","lastUpdatedTime":"2017/01/24 17:46:50.059
+0000","startTime":"2017/01/24 17:46:48.279 +0000","jobParameters":
{"tableName":"BONUSDB.ACCOUNT","com.ibm.ws.batch.submitter.jobId":"STC00304",
"com.ibm.ws.batch.submitter.jobName":"USER13
","dsJNDI":"jdbc/bonus"},"restUrl":"https://192.168.17.219:27443/ibm/api/batc
h","serverId":"localhost//shared/jsrhome/JSREXEC2","logpath":"/shared/jsrhome
/servers/JSREXEC2/logs/joblogs/SimpleBonusPayoutJob/2017-01-
24/instance.59/execution.59/","stepExecutions":
[{"stepExecutionId":82,"stepName":"generate","batchStatus":"COMPLETED","exitS
tatus":"COMPLETED"},
{"stepExecutionId":83,"stepName":"addBonus","batchStatus":"COMPLETED","exitSt
atus":"COMPLETED"}]}

USER1:/shared/zWebSphere/Liberty/V16004/lib/native/zos/s390x:>

We expected this to run in JSREXEC2 since that's the only place the BonusPayout sample
application is deployed.

We looked under the JSRMON server directory and saw that there was a directory structure for
this instance of the job. The contents of the part1.log file was essentially the same as we
showed for the batchManager example. So we we won't show it again here.

Submit using batchManagerZos and --queueManagerName

In the previous examples we showed use of the --wait parameter. This told the command
line client, either batchManager or batchManagerZos, to hold off returning to the command
prompt until the job status had been resolved (failed or completed). It did this by polling the
dispatcher server to check for the status of the job. The dispatcher, in turn, checked the job
respository database table each time it was polled. This involves some degree of overhead.

When using batchManagerZos and batch job events we have another option for determining
when a job status is resolved. This involves having batchManagerZos watch for the batch job
event indicating the job status resolution. This involves no polling, and thus no repeated calls to
the database to check for status.

To use this we exported a STEPLIB environment variable14:

export STEPLIB='MQ800.SCSQAUTH'

Without this we saw "module not found" messages.

Then we issued the following command to submit the SleepyBatchlet job:
./batchManagerZos submit --batchManager=LIBERTY+BATCH+MANAGER

--applicationName=SleepyBatchletSample-1.0 --jobXMLName=sleepy-batchlet.xml
--wait --queueManagerName=MQS1

We saw:
INFO: CWWKY0101I: Job with instance ID 60 has been submitted.

INFO: CWWKY0106I: JobInstance:
{"jobName":"","instanceId":60,"appName":"SleepyBatchletSample-

14 Or export STEPLIB=$STEPLIB:'MQ800.SCSQUATH' if you wanted to preserve any existing STEPLIB values.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 32 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

1.0#SleepyBatchletSample-
1.0.war","submitter":"","batchStatus":"STARTING","jobXMLName":"sleepy-
batchlet.xml","instanceState":"JMS_CONSUMED","lastUpdatedTime":"2017/01/24
18:02:40.968 +0000"}

INFO: CWWKY0105I: Job with instance ID 60 has finished. Batch status:
COMPLETED. Exit status: COMPLETED

INFO: CWWKY0107I: JobExecution:{"jobName":"sleepy-
batchlet","executionId":60,"instanceId":60,"batchStatus":"COMPLETED","exitSta
tus":"COMPLETED","createTime":"2017/01/24 18:02:40.924
+0000","endTime":"2017/01/24 18:02:56.171
+0000","lastUpdatedTime":"2017/01/24 18:02:56.171
+0000","startTime":"2017/01/24 18:02:41.103 +0000","jobParameters":
{"com.ibm.ws.batch.submitter.jobId":"STC00304","com_ibm_ws_batch_events_corre
lationId":"d1feb34cd97cd24b0400016f0d5d9f87c0a811db2abdf676","com.ibm.ws.batc
h.submitter.jobName":"USER14
"},"restUrl":"https://192.168.17.219:27443/ibm/api/batch","serverId":"localho
st//shared/jsrhome/JSREXEC2","logpath":"/shared/jsrhome/servers/JSREXEC2/logs
/joblogs/sleepy-batchlet/2017-01-
24/instance.60/execution.60/","stepExecutions":
[{"stepExecutionId":84,"stepName":"step1","batchStatus":"COMPLETED","exitStat
us":"SleepyBatchlet:i=15;stopRequested=false"}]}

USER1:/shared/zWebSphere/Liberty/V16004/lib/native/zos/s390x:>

Note the correlation ID we highlighted in yellow. This is what batchManagerZos uses to know
when the job it submitted has completed. It looks for a batch event with that correlator ID, and
when it sees the message with that correlator it pulls the message and determines the status.

We won't show submitting the BonusPayout job using --queueManagerName because it is just
like what we showed earlier, except with --queueManagerName=MQS1 on the end of the job
submission command. The key point being: the rest of the batchManagerZos command line job
submission syntax is the same; the only difference is the addition of --queueManagerName=
to indicate the MQ Queue Manager to connect to.

© 2017, IBM Corporation
Americas Advanced Technical Skills - 33 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

WP102544 – Sample Configuration

Document Change History
Check the date in the footer of the document for the version of the document.

January 25, 2017 Original document at time of Techdoc creation

January 27, 2017 Updated to better show the use of JDBC Type 4 authentication aliases.

June 6, 2017 Added notes about using MQ BINDINGS mode -- "If you use BINDINGS mode, you
must add the zosTransaction-1.0 feature to the feature list, as well as grant the
server READ to the BBG.AUTHMOD.BBGZSAFM.TXRRS SERVER profile. The Angel
must be started prior to the server starting."

End of WP102544

© 2017, IBM Corporation
Americas Advanced Technical Skills - 34 -

WP102544 at ibm.com/support/techdocs
Version Date: Tuesday, June 06, 2017

