
1

null

2

This presentation will cover three areas of discussion:

1. A brief overview of batch processing … as a way to set context and provide some background on the

evolution of batch processing using Java. That evolution led to the development of an open standard for Java

batch processing, which was …

2. JSR 352, the open standard specification for Java batch processing. In this section we will offer a review of

the essential elements of the standard. This will help you understand what the standard provides and does

not provide. What the standard does not provide can be provided by vendors as …

3. JSR 352 extensions, which IBM has developed as a way to offer additional value above and beyond what the

standard itself requires.

Like any “overview” presentation, this can’t cover every detail. But what it can do is provide a good

understanding of the framework of Java batch processing, JSR 352 Java batch processing, and using IBM’s

implementation of JSR 352 and the extensions IBM provides.

3

4

When we set out to design this presentation we wanted to start out with some basic level-setting about batch

processing, but not dwell on it too much as we expected most would already have a core understanding of it. So

we start this by stating the obvious – batch has been around a long time. The picture in the chart was from the

about mid-1960s, but batch pre-dated that by a fair amount. Punch cards as a means of holding data were used

with mechanical computers in the late 1890’s and the first half of the 20th century.

Even though the world of real-time and online processing has advanced quite a bit, the need to do data

processing in bulk (another way of referring to batch) continues to this day. It’s not likely to ever go away. Some

work, by its very nature, is better done in batches.

What has changed is the approach. That has evolved over time as different technologies emerged.

5

This is a somewhat simplistic chart illustrating the change in batch processing approaches over time. The two key

areas of change involved the storage medium used, and the programming language employed.

In this day and age the source of data as input to batch processing can be wherever the data resides.

Requirements around latency and batch window sizes might limit this somewhat, but the point holds: where in

past days the storage medium was limited, now it is not.

The programming languages used evolved over time based on what was available (FORTRAN, Assembler), what

was easy and wide-spread (COBOL), and what is becoming more and more wide-spread (Java). People do not

change just for the sake of change; change is driven by some need, and the direction of change is towards a

solution to the need. We explore what’s driving the change to Java on the next chart.

6

This chart lists three things that served as drivers for change to use Java for batch processing:

• Modernization – this is more than a buzzword; the motivation behind “modernizing” batch processing is

driven by a need to be more responsive to the needs of the business. It used to take months to plan for and

implement a change; that is no longer acceptable. As change requirements are identified, many are seeing

this as an opportunity to re-engineer to Java as part of the process. Further, there is an increasing desire to

separate business rules to be executed by a rules engine apart from the batch processing. All this is with the

goal in mind of being more responsive to the needs of the business.

• Skill availability – as Java becomes a more and more prevalent programming language, the skills available to

program in Java become greater. The inverse is true as well: as COBOL becomes less prevalent, the skills

there become less available. There’s a lot of COBOL programs in existence, and the need for good COBOL

programmers will not disappear overnight; still, when an opportunity to re-engineer a batch process presents

itself, many are opting to do that using Java rather than COBOL.

• Specialty engine offload – on z/OS, specialty engines (zAAP originally, then zIIP, and now with the z13 only

zIIP) provide the ability to offload certain types of work to processors where the accounting for software

license charges do not apply. Java is one such workload. By offloading Java workload to zIIP engines, the

general processors (GPs) are left to use for traditional work such as CICS, DB2 and COBOL processing.

Do you see other motivators to use Java for batch? If so, note those on this chart. The more reasons given, the

greater the case made for the point of this chart – valid reasons exist, and those reasons are behind the general

movement to Java for batch processing.

7

One question that comes up often is whether Java can perform as well as compiled code for batch processing.

The answer is … it can perform comparably, and perhaps better, depending on various factors.

Note: this is where we direct your attention to the asterisk in the lower-left of the chart … performance results

vary, and your results may be different. There are just too many factors that contribute to the overall

performance of a complex system. Nothing on this chart implies a promise or a guarantee.

How can we suggest an interpreted language such as Java could possibly compare to a compiled language like

COBOL? Much of the argument focuses on the Java Just-in-Time (JIT) compilers, which turn interpreted class files

into compiled code. The JIT compilers work by watching for code that is being executed over and over again,

then compiling those classes. Batch processing is by its nature repetitive, so the JIT compilers fairly quickly

recognize the code as candidates for being JIT’d. Further, the JIT compilers are getting better and better and

compiling very efficient code. Further still, on platforms such as IBM z Systems the processor has instructions

that were put on the chip expressly for the purpose of assisting the JIT’d code to run faster. Because the code is

compiled “real time” (meaning: when the JIT engine recognizes the code should be compiled), an up-to-date

compiler is used. Contrast that with some COBOL modules that haven’t been compiled in years, or maybe

decades. How efficient were those compilers? How much did those compilers understand about the modern

chips and the modern instructions?

This is why we say Java batch can perform comparably.

8

Java has been around for close to 20 years now, so the use of Java for batch processing is hardly new. In the early

days the batch programs were mostly “roll your own,” meaning the programmer wrote everything, with only a

little use of frameworks, and not much re-use. It was sufficiently effective to satisfy the business needs at the

time.

Later various vendor frameworks emerged – programming frameworks and execution runtime environments.

These took a great deal of the programming effort off the developer and allowed them to focus on the business

logic.

Eventually a movement emerged to create an open standard around Java batch. This was driven by a desire to

have a common programming model. Standards encourage wider adoption and the creation of libraries of re-

usable code. The open standard that resulted is known as JSR 352. We’ll take a look at that next.

9

10

The development of an open standard comes about when a group of people, working individually to solve some

challenge, come together in an effort to share ideas and agree on a common approach. When a group comes

together they form a working group, and the group works on defining and agreeing to a standard.

That’s what happened with JSR 352. The group that formed was led by IBM, and had involvement from people

representing several different companies. The result was the creation and adoption of a standard – JSR 352 – in

May of 2013. That standard specification can be found at the URL shown on the chart. The JSR 352 standard has

been accepted as a component of the broader Java EE 7 standard. That means that any platform claiming Java EE

7 compliance must demonstrate compliance with the JSR 352 standard, along with all the other standards that

make up Java EE 7.

At that point vendors market their products to those seeking to use the functionality.

Note: IBM wrote the reference implementation and the test cases to verify compliance with the standard. The

reference implementation was what went into Liberty Profile to provide the core compliance with the standard.

In addition to providing what the specification calls for, vendors may offer extensions to the standard to provide

functional value. That is what we will discuss later in this presentation – the extensions IBM has made to the JSR

352 standard to address functional areas the standard does not address.

11

We start with a very abstract representation of a batch job. We do this to begin to explain what the JSR 352

standard provides. The notes below correspond with the numbered blocks in the chart:

1. A job is a logical collection of processing that is performed when the job is submitted for execution.

2. A job will contain between 1 and n steps. Job steps perform specific batch processing within what the batch

job is trying to accomplish.

3. At a very high level, a job step typically reads some data, processes the data, and then writes the data.

4. For a job to be run, a function must be in place to accept a command to initiate the running of the job, and to

provide a way to determine when the job has completed.

5. The function described in 4 is going to need to understand the details of the job being submitted, so there

must be some means of describing the job.

6. Finally, if we have any hope of having this environment survive outages, some repository needs to be present

to keep track of jobs, their state, and their completion results.

With that we’re ready to introduce the diagram that is part of the JSR 352 specification and begin the process of

explaining the IBM JSR 352 implementation.

12

This is the diagram that is in the JSR 352 specification document. The green text boxes were added for this
presentation to describe what each element represents. The numbered blocks on the chart correspond to the
notes below.

In truth, the diagram offered by the JSR 352 specification document is not revolutionary; in fact, the JSR 352
document rather clearly states that the diagram is generic and applies to batch processing down through the
years. It’s useful to go over this diagram because many of the elements of the JSR 352 specification map directly
to this.

1. A job represents a collection of processes that comprise the batch processing to be done.

2. Jobs are comprised of 1 or more steps. Steps represent specific processing within the overall job.

3. Each step has one instance of an “ItemReader.” This is what reads the data for the step. In JSR 352, the
ItemReader is an interface behind which your code that reads the data for step resides. (Your code is
identified in the JSL, which is block 7 above.)

4. Each step has one instance of an “ItemProcessor.” This is what processes the data read by the ItemReader.
Again, this is an interface; your code resides behind this interface.

5. Each step has one instance of an “ItemWriter.” This is what writes the data to wherever your code indicates
– a file, a database, whatever.

6. The JobOperator is what provides the ability to submit, monitor and control the execution of jobs.

7. The Job Specification Language (JSL) file is an XML file that describes the job to be run. It provides the
details about the job – the steps, the Java to be run for each ItemReader, ItemProcessor and ItemWriter, job
properties to control job execution, etc.

8. The JobRepository is a data store the JSR 352 runtime uses to maintain information about job state. For
example: job status, the last good checkpoint, etc.

13

The JSR 352 diagram presented on the previous chart may leave you with the impression a batch programmer has
a lot of work to do when writing a batch program for JSR 352. It turns out, that’s not really the case. Much of the
diagram from the previous chart represents functional components a JSR 352 runtime implements. The Java
developer is responsible for a small slice of that.

The picture above shows the diagram from before, with the boxes in light blue representing what the JSR 352
runtime provides, and the elements in light yellow the things the batch programmer provides. They are:

• The Java code that implements the ItemReader for a job step. The ItemReader is what reads in data from
wherever the batch developer determines is needed for that step. It could be a file, it could be a database, it
could be a web service … wherever the data resides, the batch programmer implements the read pattern in
the ItemReader class file that is specified for a job step. (It is specified in the JSL, which we talk about below.)

• The Java code that implements the ItemProcessor for a job step. This is what does the processing on the
data. This is the business logic for the batch processing step.

• The Java code that implements the ItemWriter for a job step. This is what writes the data out to wherever
the batch programmer indicates. The JSR 352 runtime controls the frequency of the writes based on the
“chunk interval,” which you can think of like a “commit interval.”

• The Job Specification Language (JSL) file is an XML file that tells the JSR 352 runtime environment the
specifics for the job. For example, it is in the JSL that you indicate details about each step, including the Java
class files that represent the ItemReader, ItemProcessor and ItemWriter for the job step.

• Finally, the JSR 352 specification calls for a JobOperator, but something has to invoke the JobOperator to
submit the job. That “something” could be provided by the vendor (in the case of IBM, that’s the REST
interface we’ll talk about in a bit). Or it could be a little bit of customer code the developer writes to invoke
the JobOperator interface to submit and control the job. That’s why this is listed as “optional” – whether it’s
needed or not is dependent on who or what provides the function to invoke the JobOperator.

14

JSR 352 defines two types of job step implementations – the “Chunk step” and the “Batchlet step.”

The chunk step is what we just covered when discussing the JSR 352 specification diagram. It is what we typically

think of when we think of “batch processing.” This step type requires an ItemReader, ItemProcessor and

ItemWriter to be implemented.

The “batchlet” job step type is a bit simpler … it is implemented with a single Java class file. The JSR 352 runtime

invokes that class file and the batchlet step runs. It does whatever the batchlet class is written to do. When it

finishes the runtime sees that and moves on to the next step.

Batchlet job steps are useful for job tasks that are not necessarily loop / iterative in nature. For example, a step

that FTPs a large file is one you would want to invoke and have it process until complete. Trying to implement an

FTP step using the Chunk-style ItemReader, ItemProcessor, ItemWriter model would be challenging. But with the

batchlet step model it is far easier – the class implementation for the batchlet step is called, it does the FTP and it

returns.

The batchlet model is also handy for re-hosting existing Java main() programs. Those may be batch programs

written many years ago, before some of the vendor frameworks were available. Rather than re-write those

programs from scratch, you can modify them to fit within the JSR 352 batchlet job step model and run them as

part of JSR 352 processing.

A job can consist of steps written as chunk or batchlet. A multi-step job may consist of both. Any given job step

must be either chunk or batchlet, however. A given job step can’t be a mix of both.

15

To illustrate some of this we’ll use one of the samples provided with IBM’s JSR 352 implementation. This sample

application is based on a hypothetical account balance model. The purpose of the sample is to illustrate reading

account balances in, adding a fixed “bonus” value to each account balance, and then writing the updated account

data to a database file.

This sample is implemented as two job steps. The first job step – “generate” is a batchlet step that creates a file

with account data written in CSV (comma-separated value) format. That file is then used as input to the second

job step – “addBonus.” The “addBonus” step reads from the file created in the first step, adds the fixed bonus

amount to each account, and writes it out to a database table.

It’s a very simple approximation of a banking or other account-oriented batch job. It’s simple enough to follow

and it shows the essential elements of JSR 352 batch processing. Let’s now take a look at what the packaging of

this application looks like, then we’ll take a look at the Job Specification Language (JSL) file for it.

16

The sample batch application is packaged in a WAR file format. Inside the WAR file are the Java class files that

implement the two steps of the job, some data beans and utility class files, and a the Job Specification Language

file.

Note: the topic of writing JSR 352 application is an important topic, but it falls outside the scope of what this

document is designed to do. Most Java programmers will find writing JSR 352 applications fairly easy.

In the WAR file there is a Java package in which the Java class files reside. Under the \artifacts directory the

class files that implement the two steps can be found – one class for the batchlet step, and three classes for the

chunk step. Why three? Because a chunk step must implement an ItemReader, ItemProcessor and ItemWriter.

That’s what you see in the chart – three classes, each indicating the role it servers: “reader,” “processor,” and

“writer.”

The JSL file is found under the META-INF directory. We’ll take a look at that file in the upcoming charts.

This WAR file is deployed into a Liberty Profile server environment like any application is deployed – it may be

placed in the /dropins directory and be detected and loaded dynamically, or it may be placed wherever you’d

like and pointed to with an <application> element in the server.xml. The key point here is that when

packaged the JSR 352 batch application is really no different than any other application from a deployment point

of view.

17

Let’s now take a look at the Job Specification Language (JSL) file for this sample application. We’ll do this in two

parts. The first part shown here covers the job properties and the details of the first step.

Job properties provide a way to define values for things and have those values apply to the steps in the job. For

this sample job there are certain values that can be specified – such as the number of account records the first

step will generate and write to the file. Or the “chunk” (commit interval) size to use when writing the records to

the database table in the second step. Also things like where the database table is and how to reach it.

Job properties can be overridden at the time of job submission. Or the default values in the JSL file can apply.

This is an operational choice left to the people operating the runtime environment. The sample application

provides default, and in the absence of overrides provided at job submission time, the defaults will apply.

The first step is specified. It is identified as a <batchlet> step, and the ref= names the Java class file that

implements the batchlet. This job step has one property – and that’s the number of records to write out. It

inherits the value for numRecords from the properties section for the job. If the numRecords value is

overridden at job submission time, the value supplied at submission would be used.

We can see this taking shape. There’s really not much special about this … it’s just an XML file that spells out the

details of the job so the JSR 352 runtime can make sense of the things and know what to do.

Note: those familiar with z/OS Job Control Language (JCL) files should spot the conceptual similarities. Different

syntax of course, but conceptually they are very similar.

18

This is the second part of the JSL file. This shows the second step, which is the chunk step type. It is identified as

a chunk step type with the <chunk> element. Notice also that the <chunk> element specifies the property

chunkSize, which you can think of as the commit interval. It’s the interval at which the ItemWriter is called to

write out the data that has been processed for that interval.

The first thing we see is that the step has three distinct elements – a <reader>, a <processor>, and a

<writer> element. That corresponds directly to the diagram from earlier where we showed the ItemReader,

ItemProcessor and ItemWriter requirement for a chunk job step for JSR 352. Each element specifies the Java

class file that implements the reader, processor or writer. We saw in the packaging chart earlier how those three

class files were part of the WAR file.

One of the properties we saw earlier was bonusAmount. That is an integer value that is used by the

ItemProcessor and added to the account balance for each account. That is really the “business logic” for this

sample application – read in account data, add a bonus, and write the results to a database.

The pieces of the puzzle come together – the JSR 352 runtime provides what this application requires to run. The

JSL file tells the runtime about the job – the class files to load, the properties to use. The Liberty Profile server

provides the rest – the JVM in which to operate, the function to access the database, etc.

19

The JSR 352 concept of “chunk” processing implies processing some number of records, then committing the

updates made up to this point. This is standard checkpoint processing. The difference from historic batch

processing is this checkpoint processing is handled by the JSR 352 container, and not your batch code.

The interval is specified with item-count on the <chunk> element in the job specification language (JSL) file.

The chart is showing a checkpoint interval of 5, which means every five records the container will do the commit

processing. This includes persisting the checkpoint information about the “last known good” commit interval.

This is used when the step is restarted and the container needs to pick up where it left off last.

If some exception occurs in the middle of a chunk interval, then the container performs a rollback.

The item-count value can be hard-coded as shown, or it can be defined as a job property and passed in at the

time of job submission. In either case, the container receives the item-count value and processes the job step

with that interval in mind.

20

Another capability of the JSR 352 specification is the ability to organize job steps into “splits” and “flows.”

Imagine a simple sequential processing of five job steps, as illustrated by the picture on the left in the chart.

That’s how batch processing is frequently done. Steps are run in the order indicated.

Now imagine the ability to designate the step processing contain a “split” where steps are then run concurrently,

and the ability to designate several steps into a logical unit of execution called a “flow.” The diagram on the right

in the chart above illustrates this. The definition for splits and flows is contained within the JSL for the submitted

job. We’re not showing the details for that here.

When a job has a split (as shown in the simple example above), the container will dispatch the processing onto

separate JVM threads. That allows concurrent processing of steps.

Note: as the architect of your batch processing, it is up to you to understand what steps require sequential

processing and what steps may be run concurrently. The point here is that the JSR 352 specification permits the

definition of splits and flows, which gives you the flexibility to organize your job processing according to how you

see it best being performed.

21

Now imagine you have a job step in which you, as architect of the batch processing, know can be further

partitioned to run in parallel. In JSR 352 language this is known as partitioning. It is concurrent processing within

a job step.

To do this, something has to indicate the data ranges each concurrent partition is going to act upon. Your batch

code is written to take as input either specified data ranges, or to calculate the data ranges based on a specified

number of partitions. The JSR 352 container then dispatches execution across separate threads within the JVM,

and each partition then runs concurrently.

For step processing where the organization of the data permits this, partitioning can result in reduced execution

time. That is the value of parallel processing -- concurrent execution permits a reduced elapsed time, given

sufficient resources to execute in parallel.

22

Finally, we have listeners. These are like “exits” in that they provide points during job and step execution where

the container will turn control over to code you provide so that code can execute. What your listener code does

is up to you. It is based on processing you wish to do at that time.

There are 8 listeners provided with the JSR 352 implementation. They are shown on the chart above. For

example, the first one -- JobListener -- provides an exit point before the job begins step execution, and after (as

well as calling your listener code if an exception is thrown). StepListener provides a callout exit before and after

steps. And the list goes on ... begin and end of a chunk, begin and end of an itemRead operation, etc.

23

24

The JSR 352 implementation provided by IBM is built on Liberty Profile (all platforms). It is released along with

the update of Liberty Profile to support the Java EE 7 standard, which contains the JSR 352 support as noted

earlier. The first release with the Java EE 7 and JSR 352 support is 8.5.5.6.

Liberty Profile provides a good platform for running batch jobs because it is designed to be composable (you

configure only those functions you need), which means it is also lightweight (only the memory needed for the

functions you configure).

When batch jobs execute in a persistent server model – meaning, the server and its JVM stay up and active even

when batch jobs are not executing – then the cost of initializing the JVM and tearing it down for every batch job is

eliminated. That’s a key consideration when the number of batch jobs being executed is a larger and larger

number. A few batch jobs a day is likely not an issue, but when you get into hundreds or thousands of batch jobs

a day, the cost of starting and stopping the JVM each time adds up. Better to leave the JVM active and execute

the batch jobs in the same JVM.

Note: this is where Liberty Profile’s dynamic nature becomes an asset. You do not need to stop and restart the

Liberty Profile server when you deploy a new JSR 352 batch application. You do not need to stop and restart the

server with most configuration changes. You can avoid the cost of server stops and restarts for many (if not

most) changes you may need to make to your Liberty Profile configuration.

The JSR 352 standard is primarily a programming interface standard, which means many of the operational

considerations are left unaccounted for by the standard. This is where vendors, such as IBM, are free to extend

the standard with their own function. This is what IBM has done in a number of key areas. The rest of this

presentation will focus on those extensions and what they provide.

25

WebSphere Developer Tools (WDT) is a plugin to Eclipse that helps you develop and test JSR 352 applications. It

provides the Eclipse-based view of developing an application, with wizards and assistance in creating the job

steps and the JSL to describe the job. The result is an application package.

WDT also has the ability to host a Liberty runtime in which you can deploy and test your Java batch application.

WDT is aware of this embedded Liberty, and is capable of deploying applications to the directory for Liberty to

detect and load automatically. Further, WDT makes use of the REST interface of the IBM JSR 352 runtime to

submit the job and run it. (We explore the REST interface in a few charts. For now, understand that WDT makes

use of one of the IBM extensions to the JSR 352 runtime to run the batch job.)

26

As we noted earlier, the JSR 352 specification calls for a JobRepository, which is a mechanism to maintain

information about the state of batch jobs. The specification does not spell out the details of how that is to be

implemented, just that one must exist to be JSR 352 compliant.

IBM is providing three mechanisms for this JobRepository. Which you use is really a function of what you need,

based on what you’re using the Liberty Profile JSR 352 runtime for. If your use-case is ad hoc development and

testing, and you don’t require the information to persist across server starts, then an in-memory JobRepository is

available. This makes configuring the JobRepository as simple as possible.

The next level of robustness is the file-based relational Derby database. This will provide data persistence across

server restarts. It’s something you can set up and use without having to involve your database administrators

because creating the database is a simple matter of running a Java command. The database manifests as a set of

UNIX files. It works. It’s great for more advanced testing.

Finally, the next step up is a true relational database product such as IBM DB2. When the JSR 352 runtime

environment is being used for production or near-production use-cases, then this is likely what you want to use.

27

The JSR 352 specification calls for a JobOperator function. But that function is an interface that needs to be

invoked by some other code to do job submission, job monitoring and job control. The standard specification

does not spell out what that code must be … that is left to developers or vendors to implement the user interface

function that drives JobOperator.

IBM provides a RESTful interface on the front of JobOperator. This provides a way to remotely submit and control

batch jobs that run in this JSR 352 environment.

Note: this also serves as the foundation for the function used to integrate external schedulers. That function is a

command line interface that uses the REST interface on the back end to submit and manage jobs. The command

line interface (known as “batchManager”) can be invoked by a scheduler. The batchManager then uses

REST/JSON to submit the job. More on this in an upcoming chart.

JSON is passed with the REST call to provide information about the job to be submitted. The JSON is interpreted

by the IBM REST interface function, and that’s used to invoke the JobOperator methods to submit the job.

Note: an alternative is for the developer to provide their own submit / monitor / control function that uses the

JobOperator interface. The IBM sample “SleepyBatchlet” does just that – it packages a servlet that takes a user’s

standard HTTP URL and submits and manages jobs. The REST interface eliminates the need for developers to

spend time on a submission / control mechanism. That allows the developer to focus more time on

implementing the batch business logic.

The REST provides three levels of security: transport security in the form of an encrypted SSL connection; access

security in the form of authentication; and authorization security in the form of role-based access to functions of

the JSR 352 runtime.

28

The batchManager function is a command line client that uses REST/JSON and the REST interface to submit and

monitor jobs. The batchManager function eliminates the need for you to construct a REST client; the

batchManager is the REST client with a command line interface.

The batchManager function provides a way to integrate with external schedulers. Those schedulers are already

equipped to run shell scripts or submit programs. A shell script can be written to invoke the command line

interface offered by batchManager. A “–wait” parameter can be used to have the script delay completion until

the Java batch job in JSR 352 completes. When the Java batch job completes, the “—wait” parameter will release

and the script ends. That tells the scheduler the job has completed.

29

Another variation on the batchManager command line interface is one for z/OS only … it’s called

batchManagerZos and it uses the cross-memory WOLA function to access the Liberty Profile server and invoke

the JobOperator. It does not use the REST interface.

What’s the advantage? As the chart indicates, this client (unlike the regular batchManager client), is not a Java

client, so no JVM needs to be initiated for this. On z/OS that can be particularly important when overall CPU is

being carefully monitored. A few invocations of the Java client batchManager might not be noticed, but

thousands per day might. The batchManagerZos client avoids that.

This client uses WOLA, which is cross-memory, which means there’s no TCP network stack involved. There’s no

need to coordinate certificates because there is no SSL … it’s cross-memory. The limitation there is, of course,

that batchManagerZos and the Liberty Profile server with JSR 352 must be in the same z/OS LPAR.

The same authorization roles as batchManager exists – admin, submitter and monitor.

30

In the 16.0.0.4 release of Liberty, the AdminCenter was updated to include a "Java Batch" tool that appears in the

list of tools in the toolkit. This Java Batch tool is really a graphical interface to the information in the Job

Repository: it retrieves from the database the information about the jobs and formats the result on the browser

screen. There you can see the status of each job, and retrieve the job log for viewing as well.

It should be noted this is a "read only" function. You can't submit jobs through this interface or perform update

actions such as delete jobs. Those roles are performed through the batchManager or batchManagerZos

command line utilities. This tool is good for people responsible for monitoring jobs but do not have the authority

to submit or change jobs.

31

In the 17.0.0.1 release of Liberty, the AdminCenter Java Batch tool has been enhanced to provide additional

operational controls for a batch job. For a job that's currently running, you can invoke a 'Stop' action against the

job. For a batchlet step, that will stop in accordance with the stop() method that's implemented. For a chunk

step, the current checkpoint interval processing will be stopped, the transaction rolled back to the last persisted

checkpoint value, and the job stopped. Upon restart, a batchlet step simply runs again. A chunk step will pick up

at the last checkpoint value.

32

Earlier we showed the Job Specification Language (JSL) file packaged with the application. When submitting a job

using the Command Line Interface, the JSL to use is named using the --jobXMLName= parameter. That name

gets passed to the server over the REST interface. The container then looks in the application packaging directory

and uses the named JSL.

Another way to accomplish this is to use IBM’s “Inline JSL” extension, which allows you to maintain the JSL

outside the application packaging and provide the JSL at time of job submission. From the Command Line

Interface this is done with the --jobXMLFile= parameter providing the path and name of the JSL file. The

IBM Workload Scheduler product can be used to store JSL for use when submitting jobs.

33

Integration with enterprise scheduler functions (either from IBM or other vendors) is always a topic of interest

when Java Batch is discussed. IBM’s WebSphere Liberty Batch provides a command line interface function to

provide this integration. The enterprise scheduler can interface with the command line to submit jobs, check the

status of jobs and retrieve job logs.

Two command line interface utilities are provided: batchManager and batchManagerZos. Both have the same

command line syntax. The difference is batchManager uses RESTful calls to access the REST interface of the IBM

WebSphere Liberty Batch server; batchManagerZos uses the cross-memory WOLA support of Liberty z/OS to

access the server. If your enterprise scheduler is on the same LPAR as the IBM WebSphere Liberty Java Batch

server, the use of WOLA provides a very fast connectivity mechanism. The advantage of batchManager (REST

integration) is it can be used from any platform.

34

IBM Workload Scheduler is an enterprise scheduler product used to manage and coordinate batch job workloads.

It has the ability to interact directly with the IBM JSR 352 REST interface for submitting batch jobs and monitoring

their progress.

This function is enabled in IBM Workload Scheduler (IWS) by way of a configurable “plugin” to IWS. This is

noteworthy because it means you do not need to be at the latest level of IWS to use this. And because it’s using

REST, which is a network-based protocol, this can be used to integrate with IBM JSR 352 on any platform.

If you’re interested in seeing more on this function, see the video at the link shown on the chart.

35

When a JSR 352 batch job is running, the job will run through a number of states. The “Batch Events” function is

designed to emit an “event” (a message) to a JMS topic space as the batch job progresses through the various job

states. This is useful for processes that wish to monitor the progress of jobs.

This feature of IBM JSR 352 is optional. It is configured with an update to the server.xml for the IBM JSR 352

Liberty instance. That XML update enables the function and provides information about the JMS specifics -- the

MQ queue manager and topic, or the Default Messaging location and topic.

The topic space is organized into a tree structure, and the IBM JSR 352 runtime will emit events associated with

the leaves of the tree based on the job state. Monitoring processes may subscribe to specific leaves, or use

wildcards to get events associated with multiple leaves.

Again, this provides a way for processes to subscribe to the topic and monitor the state of processing.

36

The next extension we’ll cover is the multiple-JVM support for JSR 352. In a nutshell, what this does is a provide a

way to separate the duties, and have a Liberty Profile server act as a dispatcher of jobs, and have other Liberty

Profile servers act as executors where the jobs run.

This mechanism is built around JMS queuing – either the integrated Service Integration Bus (SIBus) of Liberty

Profile or MQ. The Liberty Profile server that acts as the dispatcher receives the job submission requests through

the REST or WOLA interfaces as outlined earlier. The dispatcher then puts the job submission request on the

queue. From there the servers designated as endpoints pick the messages up and run the jobs.

But wait … what server picks up what job requests? That’s based on a selection criteria you set in the executor

servers. We’ll cover that on the next chart. For now the thing to understand is the executor servers will only pick

up those messages they are configured to pick up.

37

The previous chart mentioned that the endpoint servers will only pick up job submission requests that the

executor server is configured to pay attention to. That’s done with a property in the JMS listener configuration

element. The property is messageSelector=, and it indicates what messages in the queue to pay attention

to and pick up for execution.

The chart offers three examples with numbered blocks. Those numbered blocks correspond to these notes:

1. The simplest example is where the endpoint is configured to look for and pick up a job request based on the

application name. Imagine you have five executor servers, and one is configured with the message selector

for BatchJobA. Then only that server will run that batch job. The other executor servers will see the job

submission request, but since their message selector configuration is for something other than BatchJobA

they will ignore it. Only the server configured for BatchJobA will run it.

2. This shows the way you would code an “or” condition for two batch jobs.

3. You are not limited to just the application name. You can make the executor select based on your own

custom properties in the job submission message. This example is showing selection based on two things –

the application name equaling “BatchJobA” and the custom property myProperty equaling a value of

“myValue.”

The value of this extension is it provides a way to separate job submission from job execution. It allows jobs to be

submitted and wait in the queue until a server is started that is configured to run the job. You can use this to

have jobs run in only those servers you want them to run in (for example, on z/OS a server with a particular WLM

service classification associated with it). This model is also not limited to just one server or just one platform …

because it’s using JMS queuing between the dispatcher and executor, it’s possible to have this span servers and

platforms. There’s considerable flexibility in what can be done with this.

38

Another functional extension came in with the 8.5.5.8 fixpack. This is an extension of the earlier “Step Partition”

feature, but whereas the JSR 352 specification provided for partitioning workload across threads in a single JVM,

this splits across multiple JVMs.

This function is built on the multi-JVM support with a dispatcher and executor servers and a messaging queue

between the two. A distinction is now made between a “job executor” and a “partition executor.” The job

executor is what listens for and picks up dispatch messages with “work_type=Job”, and it then partitions the job

and places the partition requests back on the queue with “work_type=Partition”. The partition executors listen

for and pick up these partitioned job requests and execute them. The top job (running in the Job executor, waits

to hear back from the partition processes. When they all complete the top job moves on to the next step.

39

Finally, here's a chart showing how you would accomplish the dispatcher/executor model using the support for

Liberty inside of CICS.

40

Job logging does not seem a very exciting extension, but when hundreds or thousands of jobs are being run then

the ability to logically organize job logs becomes very helpful.

The way job logging works with IBM’s JSR 352 is to place logs into a directory tree based on the application name,

the date, the job instance number and the job execution number. The chart above illustrates this. The logs by

default go into the /logs directory for the server, but can be configured to go to any location you specify.

Once the job log has been written, the REST interface (or the batchManager command line client) will return the

location of the job log for a given job execution. If you wish to retrieve the job log, the REST interface will allow

you to do that.

41

SMF (Systems Management Facilities) is a mechanism on z/OS that allows components to write activity records in

a highly efficient way. The content of the SMF record written by a component is based on what the component

architects wish to capture. For Java Batch, the SMF record is 120, subtype 12.

A summary review of what's included with the 120.12 record is shown on the chart. The information include the

job and step start and stop times; information about the server where the job ran; the exit status; as well as CPU

time used information.

For a more complete review of the new SMF 120.12 record, see the WP102668 Techdoc. The URL is on the chart.

42

Finally, enablement of the JSR 352 functionality within a Liberty Profile server is relatively simple. Two

<feature> elements enable the function:

• batch-1.0 … this is what enables the core JSR 352 support. This does not enable the REST interface, the

job logging, or the multi-JVM support. You can run batch jobs with just batch-1.0 but you would need some

function to invoke the JobOperator interface to submit the job (and as noted, the SleepyBatchlet sample

illustrates how this is done).

• batchManagement-1.0 … this enables the REST interface, multi-JVM support and the job logging support.

If you code this then batch-1.0 is assumed and is loaded if not specified. Coding both as shown works as well.

The JSR 352 environment needs to understand where the JobRepository is going to be, and the

<batchPersistence> element provides this. This element is used to contain the definitions about which

persistence model is being used and where the database is located.

Note: there are some details that are left off this chart. We are not showing the configuration XML for the JDBC

support, for example. We are not showing the JMS definitions for the multi-JVM support. Like any solution the

details become very important when you are trying to configure and implement the solution. This presentation is

focused on showing an overview, so for this chart we’re leaving details out to keep things focused on the key

points.

43

And this is the overall summary of the message delivered in the charts of this presentation.

44

A reference for other information.

45

46

47

Job and step listeners get control at various points during the execution of the job: at the start of the job, and the

end of the job, and at the start and end of each step. You implement the listener function you desire by coding to

the listener methods (as specified in the JSR-352 specification) and identifying in JSL the class that contains your

implementation. Then at the start of the job the container will call beforeJob() and your code gets control; at the

end of the job the container calls afterJob(). For steps the same applies, except the methods called are

beforeStep() and afterStep().

These listeners are relatively simple in that they take no parameters as input, and they do not return anything.

48

The chunk listener has both a beforeChunk() method and an afterChunk() method. But it also has an onError()

method for when an unhandled error is surfaced in the process of iterating through the chunk. When an

unhandled error surfaces, the container calls the onError() method and passes the exception that was surfaced.

Your onError() implementation code may then do what you wish it to do -- for example, log the exception that

occurred.

49

Within chunk processing we have the ItemReader, the ItemProcessor, and the ItemWriter. Each artifact has its

own set of listeners. On this chart we look at the ItemRead listeners. There are three: beforeRead(), afterRead(),

and onReadError().

The beforeRead() method is relatively simple: it is called at the start of each ItemReader operation. The listener

has no input parameters, and passes nothing back.

The afterRead() method takes as a parameter the item that was read by the ItemReader. That is passed in as an

object, and the listener may then do what it is designed to do with that information.

The onReadError() method is called by the container when an unhandled exception surfaces from the

ItemReader. The onReadError() method is called, and the exception that is surfaced is passed to the method.

50

The ItemProcessor has three listeners -- beforeProcess(), afterProcess(), and onProcessError().

The beforeProcess() method is called at the start of the ItemProcessor operation. It takes as input the item object

that was read in by the ItemReader.

The afterProcess() method receives two parameters as input: the item object that was read by the ItemReader

(and processed by the ItemProcessor), and the result object from the ItemProcessor.

The onProcessError() method is called by the container when an unhandled exception surfaces from the

ItemProcessor. Two parameters are passed to this method: the object item that was passed to the processor

from the ItemReader, and the exception that was surfaced.

51

The ItemWriter has three listeners -- beforeWrite(), afterWrite(), and onWriteError().

When the container calls beforeWrite() it passes in the list of objects that was created by the reader/processor

chunk iteration. This is the list of items to be written by the ItemWriter. The listener gets this list of items so your

listener code may then do what you wish this listener to do; for example, log the items.

When the container calls afterWrite() it also passes in the list of items that ItemWriter received.

The onWriteError() method is called when an unhandled exception surfaces during the ItemWriter processing.

The listener takes as input two things: the list of items the ItemWriter was passed, and the exception that was

thrown.

52

We're going to next cover skip and retry listeners, but before doing that let's do a brief review of how skip

processing is done. Then we'll cover the listeners for skip processing. Then we'll review retry processing, and

we'll finish up with the retry listeners.

In a chunk loop, the three artifacts present (reader, processors, and writer) may experience exceptions that you

wish to acknowledge but keep processing. The JSR-352 specification allows for defining what exceptions are

"skippable," and also how many skipped exceptions may be tolerated before the steps is failed.

Note: the skip processing only applies to exceptions that are defined as skippable. Unhandled exceptions without

a skippable definition will result in the termination of the step.

The definition of what is considered "skippable" is done in the JSL. This is defined at the <step> level. An

exception is skipped (that is, ignored) if it is defined on an <include> element. An exception is not skipped if it is

defined on an <exclude> element. So in the example on the chart, all exceptions that match java.lang.Exception

(which is all exceptions) would be skipped, except for java.io.FileNotFoundException (and subclasses of that)

because it's defined on an <exclude>.

That example is taken straight from the JSR-352 specification, and is (perhaps) not a very good example because

in general, skipping on general Java exceptions is not a good practice. It is better for your code to handle

exceptions, and then skip based on your own class names. Skipping on general Java exceptions may result in your

batch job skipping things you didn't intend to skip. In other words, be deliberate about what you're skipping.

The <skip-limit> definition in JSL can be used to protect against excessive skips. The default is no limit, so if you're

going to use exception skipping, you may want to consider limiting it to some reasonable number of skips before

you determine some bigger problem is occurring and failing the step.

53

The next question that comes up is this -- what happens when an exception is skipped? That depends on where

the exception that was skipped occurred.

When an exception is thrown by the ItemReader, and a skippable definition applies, then the container simply

calls ItemReader again and the next item is read. In this case you would very likely want to implement a SkipRead

listener so you can capture details about the item that was skipped. We'll cover the details of the skip listeners in

the upcoming charts.

When an exception is thrown by the ItemProcessor, and a skippable definition applies, then the container loops

and calls the ItemReader again, which results in the next item being read. That means the previous item read by

the ItemReader is never processed or written. So again, implementing a SkipProcess listener would be a good

practice to capture information about the item whose processing was skipped.

Finally, for ItemWriter a skipped exception is a bit more involved. The container will commit the current

transaction with the data written to that point. Then it starts a new chunk and calls the ItemReader. That may

mean that some data was not written out. The SkipWrite listener can be used to capture information about the

list of items the writer was working on. You can use that to analyze what was committed and what was not.

54

This chart provides the details on the read, process, and write skip listeners.

The onSkipReadItem() method receives as input the exception that was thrown when the skip definition took

effect. The onSkipProcessItem() method receives as input the item object that was passed over from the

ItemReader, as well as the exception that was thrown when the skip definition took effect. Finally, the

onSkipWriteItem() method receives the list of items passed to it from the read/process loop, as well as the

exception that was thrown.

55

The JSR-352 specification also defines the ability to retry processing when an unhandled exception surfaces from

the reader, processor, or writer. What takes place depends on a number of things, so the flowchart shown above

is an attempt to take you through the processing:

• Starting at the top ... assume an unhandled exception is thrown in either the reader, processor, or writer.

• The next questions is whether there is a retry definition in the JSL for the step. The retry definition is very

similar to the skip definition, but the syntax is for retry, not skip. If yes, then we flow down to the retry limit

question; if no, then there's no retry attempted and we flow right to the issue of whether skip is defined.

• If retry is defined and the retry limit has been reached, then we fail the step. But if the limit has not been

reached, then it checks to see if a "no-rollback" definition is in the JSL. If yes (meaning: no rollback) then the

container simply retries the operation that threw the exception. If no (meaning no rollback is not defined,

therefore rollback), then the container rolls back the transaction and starts the chunk again, but this time

with a checkpoint of item-count=1. The purpose of this is to incrementally approach the point where the

exception occurred, and commit as much as possible in the event the same exception is thrown again.

• Moving back up ... no retry defined, so is skip defined? If not, then the exception results in the step being

failed. But if a skip is defined, then it drops down and asks whether the skip limit has been reached. If yes,

then the step is failed. But if not, then the skip operation is performed.

The retry processing is designed to overcome transient problems where the possibility exists that a retry will

result in success. The retry-limit is there to protect you against a case where the problem is not transient.

Repeated retries without success and no retry limit could potentially go on forever. So if you use retry processing

(and skip, for that matter), then limiting the retry attempts is a good idea.

56

Here we illustrate the three retry listeners, one for ItemReader, one for ItemProcessor, and one for ItemWriter.

The pattern is similar to what we've seen earlier: when an unhandled exception surfaces and the exception is

defined as one that is retryable, then the container will call the listener.

onRetryReadException() receives as input the retryable exception that was thrown.

onRetryPRocessException() receives as input the item that was passed to the processor and was being processed

at the time of the exception, as well as the exception that was thrown.

onRetryWriteException() receives as input the list of items that was passed to the writer and was being processed

at the time of the exception, as well as the exception that was thrown.

57

58

To set the stage for the discussion on partitioning, we set up an example where we want three partitions; the first

partition only acts up on data records related to the state of New York, the second acts only on data records from

Vermont, and the third partition only acts upon data records from Ohio.

The question is how you can pass to the partitions the information about which state's data records they are to

act upon. This can be done using either static values in the JSL, or by using the partition mapper and then

programmatically pass the values to each partition.

For simplicity we're showing three partitions, but it could just as easily be five, or twenty, or whatever number

makes sense for your application.

59

This chart illustrates how the state values (in our example) can be passed to the partition using "fixed" definitions

in the JSL. Fixed is in quotes because, as the footnote says, the values can be passed into the JSL as job

properties. That would create JSL where "New York," "Vermont," and "Ohio" don't appear in the JSL itself, but

using substitution you can pass them in at time of job submission and achieve the same effect as having them

hard-coded as shown here.

Down in the <partition> section you can specify a <plan> and name the number of partitions, and properties for

each. In this example, the first partition (partition 0) is assigned the state name "New York." The second partition

is assigned "Vermont," and the third partition is assigned "Ohio."

60

The alternative is to use the partition mapper, which is code you write that produces a set of parameters that is

used to determine the partition operations. In the <processor> section the property is defined just as it was with

the fixed example on the previous chart, but further down in the JSL the <partition> section includes a <mapper>

definition. The mapper is software you implement that is called by the container before the partitions are

created. The mapper returns a set of parameters to be used for the partitions, including the number of partitions

and the property value (the state name) to be used by each partition.

61

The partition mapper is specified in the JSL using the <mapper> element. This points to the Java class that

implements your mapper. A sample implementation of the PartitionPlan is provided as PartitionPlanImpl in the

JSR-352 specification.

62

Two more interfaces are introduced here: the partition collector, and the partition analyzer. Collectors run in

each partition. For chunk steps they are called after every chunk checkpoint, and for batchlets they are called at

the end of the batchlet. They send the information collected over to the analyzer, which runs on the parent

thread.

63

On this chart we're bringing together the collector and analyzer, as well as another function called the partition

reducer. The JSR spec says this about all three:

Since each thread runs a separate copy of the step, chunking and checkpointing occur independently on each

thread for chunk type steps. There is an optional way to coordinate these separate units of work in a partition

reducer so that backout is possible if one or more partitions experience failure. The PartitionReducer batch

artifact provides a way to do that. A PartitionReducer provides programmatic control over logical unit of work

demarcation that scopes all partitions of a partitioned step. The partitions of a partitioned step may need to

share results with a control point to decide the overall outcome of the step. The PartitionCollector and

PartitionAnalyzer batch artifact pair provide for this need.

The reducer gets control before any partition runs, then again after all partitions end. While the partitions are

running, the collectors in each partition are getting control after every chunk checkpoint (for batchlets at the end

of the batchlet) and they send data back to the parent thread where the analyzer receives and analyzes the data.

The analyzer runs continuously while the partitions are active.

When all the partitions end, then the reducer gets control again. What it does depends on whether rollback is

indicated or not. Finally, the reducer gets control one final time after the step completes.

64

Finally, we'll explore two more things -- Job contexts and Step contexts.

Job contexts provide a way for your batch step code to set and get information about the job during the

execution of the job. The data it can get includes the job name, job properties, and status information. It can

also set transient user data, and set the exit status for the job.

The transient user data is just that -- transient -- and is not persisted to the job repository. It exists during the life

of the job, but not after. The information stays local to the JVM in which it is set. It's useful for passing

information between steps in a job that executes within a single JVM.

65

Step context is similar to job context in concept, but it is not the same thing as job context. With the step context

function you can get and set information as shown on the chart. You can set either transient user data or

persistent user data. Transient user data is not persisted, and exists only as long as the step exists. Persistent

user data is stored in the job repository, and exists beyond the life of the step.

Some quick notes about step context -- you can't communicate across partitions using step context, as each

partition gets its own unique step context. But step context is a good way to pass information between elements

within a step, such as between the ItemReader and the reader listener or a skip listener.

End of Document

