[=/=}/=} TQ /=)

eyl

oo

IBM WebSphere Liberty
Java Batch

Nl B

Technical Overview

© 2018, 1BM Corporation

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Topics to be Discussed

©

* Brief Overview of Batch Processing
Including background on Java Batch evolution

* Overview of JSR 352

A review of the key elements of the standard

* IBM Implementation and Extensions
A review of how JSR 352 is implemented by IBM, including

extensions to the standard that provide additional
operational features and benefits

2z & 2008, 135 Corporation

This presentation will cover three areas of discussion:

1. A brief overview of batch processing ... as a way to set context and provide some background on the
evolution of batch processing using Java. That evolution led to the development of an open standard for Java
batch processing, which was ...

2.JSR 352, the open standard specification for Java batch processing. In this section we will offer a review of
the essential elements of the standard. This will help you understand what the standard provides and does
not provide. What the standard does not provide can be provided by vendors as ...

3.JSR 352 extensions, which IBM has developed as a way to offer additional value above and beyond what the
standard itself requires.

Like any “overview” presentation, this can’t cover every detail. But what it can do is provide a good
understanding of the framework of Java batch processing, JSR 352 Java batch processing, and using IBM’s
implementation of JSR 352 and the extensions IBM provides.

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Batch Processing ...

... and what led up to Java Batch

% £ 2018, |BM Corporalicn

- WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

Batch Processing Has Been Around a Very Long Time

There has long been a
need to process large
amounts of data to arrive
at results from the data

There continues to be the
same need today

It is unlikely the need to
do processing in batch will
g0 away any time soon

— 3 2 -:“.'-.' j a =0
A picture from the 1960s, and batch processing pre-dated
this by several decades, or even centuries, depending on

Wik s congldersd @ [[x.«ru ™

The need persists, the approach has evolved ...

4 @ 2018, (884 Conporation

When we set out to design this presentation we wanted to start out with some basic level-setting about batch
processing, but not dwell on it too much as we expected most would already have a core understanding of it. So
we start this by stating the obvious — batch has been around a long time. The picture in the chart was from the
about mid-1960s, but batch pre-dated that by a fair amount. Punch cards as a means of holding data were used
with mechanical computers in the late 1890’s and the first half of the 20% century.

Even though the world of real-time and online processing has advanced quite a bit, the need to do data
processing in bulk (another way of referring to batch) continues to this day. It’s not likely to ever go away. Some
work, by its very nature, is better done in batches.

What has changed is the approach. That has evolved over time as different technologies emerged.

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Evolution: Data Storage and Programming Languages

Tape, Disk, Memory,
Punch Cards Magnetic Tape Cloud Services, Rules
Paper Tape Magnetic Disk Engines, etc.

! ! ?
l l I

FORTRAN COBOL Java
Assembler

Change is driven by need. So what is driving the
trend towards Java for batch processing?

% B 3008, 130 Derporetion

This is a somewhat simplistic chart illustrating the change in batch processing approaches over time. The two key
areas of change involved the storage medium used, and the programming language employed.

In this day and age the source of data as input to batch processing can be wherever the data resides.
Requirements around latency and batch window sizes might limit this somewhat, but the point holds: where in
past days the storage medium was limited, now it is not.

The programming languages used evolved over time based on what was available (FORTRAN, Assembler), what
was easy and wide-spread (COBOL), and what is becoming more and more wide-spread (Java). People do not
change just for the sake of change; change is driven by some need, and the direction of change is towards a
solution to the need. We explore what’s driving the change to Java on the next chart.

= WP102544 atibm.com/support/techdocs
—3 IBM WebSphere Liberty Java Batch Technical Overview

hings Creating Push to Java for Batch

—

Desire to Modernize Batch Processes

Motivation behind this takes many forms — new business needs; some
updlate to an eXIstlng batch program us needled and it’s seen as a good]
88 logic into rules engine

W@Fm&?@ @@ﬁm@

Availability of Java Skills

Particularly relative to other skills such as COBOL.

z/0S: Ability to Offload to Specialty Engines

Workload that runs on z/OS specialty engines (zAAP, zIIP) is not counted
towards CPU-based software charges.

& © 2018, |BM Corporaiion

This chart lists three things that served as drivers for change to use Java for batch processing:

* Modernization — this is more than a buzzword; the motivation behind “modernizing” batch processing is
driven by a need to be more responsive to the needs of the business. It used to take months to plan for and
implement a change; that is no longer acceptable. As change requirements are identified, many are seeing
this as an opportunity to re-engineer to Java as part of the process. Further, there is an increasing desire to
separate business rules to be executed by a rules engine apart from the batch processing. All this is with the
goal in mind of being more responsive to the needs of the business.

» Skill availability — as Java becomes a more and more prevalent programming language, the skills available to
program in Java become greater. The inverse is true as well: as COBOL becomes less prevalent, the skills
there become less available. There’s a lot of COBOL programs in existence, and the need for good COBOL
programmers will not disappear overnight; still, when an opportunity to re-engineer a batch process presents
itself, many are opting to do that using Java rather than COBOL.

* Specialty engine offload — on z/0S, specialty engines (zAAP originally, then zIIP, and now with the z13 only
zIIP) provide the ability to offload certain types of work to processors where the accounting for software
license charges do not apply. Java is one such workload. By offloading Java workload to zIIP engines, the
general processors (GPs) are left to use for traditional work such as CICS, DB2 and COBOL processing.

Do you see other motivators to use Java for batch? If so, note those on this chart. The more reasons given, the
greater the case made for the point of this chart — valid reasons exist, and those reasons are behind the general
movement to Java for batch processing.

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Can Java Run as Fast as Compiled Code?

Comparably ... and sometimes faster*:
« Batch processing is by its nature iterative, which means
Java classes prone to being Just-in-Time (JIT) compiled
at runtime

« Java JIT compilers are getting v
JIT'd code

« z/0S: System z processor chips have instructions

ifically designed to aid JW@@W@M@@ code

take specific advantage of Chlp mstructlons
¥ .

W Results vary, depending on many factors. Thisis not a promise of performance results.
v

7 © 2018, I1BM Corporation

One question that comes up often is whether Java can perform as well as compiled code for batch processing.
The answer is ... it can perform comparably, and perhaps better, depending on various factors.

Note: this is where we direct your attention to the asterisk in the lower-left of the chart ... performance results
vary, and your results may be different. There are just too many factors that contribute to the overall
performance of a complex system. Nothing on this chart implies a promise or a guarantee.

How can we suggest an interpreted language such as Java could possibly compare to a compiled language like
COBOL? Much of the argument focuses on the Java Just-in-Time (JIT) compilers, which turn interpreted class files
into compiled code. The JIT compilers work by watching for code that is being executed over and over again,
then compiling those classes. Batch processing is by its nature repetitive, so the JIT compilers fairly quickly
recognize the code as candidates for being JIT'd. Further, the JIT compilers are getting better and better and
compiling very efficient code. Further still, on platforms such as IBM z Systems the processor has instructions
that were put on the chip expressly for the purpose of assisting the JIT'd code to run faster. Because the code is
compiled “real time” (meaning: when the JIT engine recognizes the code should be compiled), an up-to-date
compiler is used. Contrast that with some COBOL modules that haven’t been compiled in years, or maybe
decades. How efficient were those compilers? How much did those compilers understand about the modern
chips and the modern instructions?

This is why we say Java batch can perform comparably.

WP102544 atibm.com/support/techdocs

IBM WebSphere Liberty Java Batch Technical Overview

Roll Your
Own

!

The Evolution of Java Batch ...

Vendor Batch
Frameworks

!

Open Standard

!

l

Typically built
around the JVM
launcher concept

Processing logic all

clietam_rnda aftan
WA LwWIN vvuv, Wikwil

specific to the batch
program, with only
some re-use

-]

l

Examples: IBM
Compute Grid,
Spring Batch

Framework removed

a lat af radina affart
T IwvLwE WV vv\llllu WwilWVi L

from developer and
allowed focus to be
on business logic

.

JSR 352

Open standards
allow for code
portability and the

davalanmant nf
“v'vlvvlllvl is Wi

larger libraries of
re-usable code

© 2B, (8% Corparatian

Java has been around for close to 20 years now, so the use of Java for batch processing is hardly new. In the early
days the batch programs were mostly “roll your own,” meaning the programmer wrote everything, with only a

little use of frameworks, and not much re-use. It was sufficiently effective to satisfy the business needs at the
time.

Later various vendor frameworks emerged — programming frameworks and execution runtime environments.

These took a great deal of the programming effort off the developer and allowed them to focus on the business
logic.

Eventually a movement emerged to create an open standard around Java batch. This was driven by a desire to
have a common programming model. Standards encourage wider adoption and the creation of libraries of re-
usable code. The open standard that resulted is known as JSR 352. We’'ll take a look at that next.

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Overview of JSR 352

2 © 2018, 188 Corpwation

- WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

The Process of Creating an Open Standard

@ri ol it sl i Ealeszeaf Fermlar
Group Standard Specification impiementations

. I
A = | Vendors
release
L= products and

[Pt
Working
1

LU

I
| 1 I
| I
P I I
| I I
| i 1 provide
| Thegroupworkstocreatea . . o ideailtid3s2 | extensions
| Visionandadocumentof | foradditional
| theproposedspecification. | The specification detailsthe | value
| Aftor rovicerand I requirements andinterfaces. |
| . I I
| acceptanceitbecomesa ;| TheJSR352specification |
| I I
vongonme | BMieatus groupwin | Sndhasbesnacceptedass |
challenges involvement from people e el
independent of from several other speciicazon aswell.
one ancther companies.
a € B8, 18 Cerporaden

The development of an open standard comes about when a group of people, working individually to solve some
challenge, come together in an effort to share ideas and agree on a common approach. When a group comes
together they form a working group, and the group works on defining and agreeing to a standard.

That’s what happened with JSR 352. The group that formed was led by IBM, and had involvement from people
representing several different companies. The result was the creation and adoption of a standard — JSR 352 —in
May of 2013. That standard specification can be found at the URL shown on the chart. The JSR 352 standard has
been accepted as a component of the broader Java EE 7 standard. That means that any platform claiming Java EE
7 compliance must demonstrate compliance with the JSR 352 standard, along with all the other standards that
make up Java EE 7.

At that point vendors market their products to those seeking to use the functionality.

Note: IBM wrote the reference implementation and the test cases to verify compliance with the standard. The
reference implementation was what went into Liberty Profile to provide the core compliance with the standard.

In addition to providing what the specification calls for, vendors may offer extensions to the standard to provide
functional value. That is what we will discuss later in this presentation — the extensions IBM has made to the JSR
352 standard to address functional areas the standard does not address.

10

= WP102544 atibm.com/support/techdocs
—3 IBM WebSphere Liberty Java Batch Technical Overview

Very Abstract Representation of a “Batch Job”

&

initiate and @ Job

control job
j * Read data
Job Step |«—>| * Processdata
* Write data
_—
A way to describe * Read data
the details of the Job Step |«—| ¢ Processdata
job to whatever « Write data
does the job

submission and
control

o
®
* Read data
B * Processdata
* Write data
A way to keep

track of the state
n of the execution

We offer this as a way to set the stage for
the discussion of the JSR 352 specification

11 © 2018, I1BM Corporation

We start with a very abstract representation of a batch job. We do this to begin to explain what the JSR 352
standard provides. The notes below correspond with the numbered blocks in the chart:

1. Ajobis alogical collection of processing that is performed when the job is submitted for execution.

2. Ajob will contain between 1 and n steps. Job steps perform specific batch processing within what the batch
job is trying to accomplish.

3. Atavery high level, a job step typically reads some data, processes the data, and then writes the data.

4. Forajobto be run, a function must be in place to accept a command to initiate the running of the job, and to
provide a way to determine when the job has completed.

5. The function described in 4 is going to need to understand the details of the job being submitted, so there
must be some means of describing the job.

6. Finally, if we have any hope of having this environment survive outages, some repository needs to be present
to keep track of jobs, their state, and their completion results.

With that we’re ready to introduce the diagram that is part of the JSR 352 specification and begin the process of
explaining the IBM JSR 352 implementation.

11

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

The JSR 352 Diagram to Describe the Architecture

Ajobis a logical
representation of the

A file that declares the
specifics of the job and the

steps contained in the job Patoh peocsmine = i:terfat:: t: stcle
that reads data
A job may consist of
A function and interface one to many steps
used for job submission and 1 ItemReader

job control
Job Specification Language B—

1 * - Aninterface to
JobOperator Job Step 1 1/ |temProcessor code that
| processes data
T N
A J A J A J
n JobRepository 1 ItemWriter
B_ An interface to code
that writes data

A mechanism to persist
information about the state
of jobs in the environment.

For example, a set of You'll see how this is implemented in an
relational database tables.
upcoming section of this presentation
12 © 2018, 1BM Corporation

This is the diagram that is in the JSR 352 specification document. The green text boxes were added for this
presentation to describe what each element represents. The numbered blocks on the chart correspond to the
notes below.

In truth, the diagram offered by the JSR 352 specification document is not revolutionary; in fact, the JSR 352
document rather clearly states that the diagram is generic and applies to batch processing down through the
years. It’s useful to go over this diagram because many of the elements of the JSR 352 specification map directly
to this.

1. Ajob represents a collection of processes that comprise the batch processing to be done.

2. Jobs are comprised of 1 or more steps. Steps represent specific processing within the overall job.

3. Each step has one instance of an “ItemReader.” This is what reads the data for the step. In JSR 352, the
ltemReader is an interface behind which your code that reads the data for step resides. (Your code is
identified in the JSL, which is block 7 above.)

4. Each step has one instance of an “IltemProcessor.” This is what processes the data read by the ltemReader.
Again, this is an interface; your code resides behind this interface.

5. Each step has one instance of an “ltemWriter.” This is what writes the data to wherever your code indicates
— a file, a database, whatever.

6. The JobOperator is what provides the ability to submit, monitor and control the execution of jobs.

7. The Job Specification Language (JSL) file is an XML file that describes the job to be run. It provides the
details about the job — the steps, the Java to be run for each ItemReader, ItemProcessor and ItemWriter, job
properties to control job execution, etc.

8. The JobRepository is a data store the JSR 352 runtime uses to maintain information about job state. For
example: job status, the last good checkpoint, etc.

12

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

We explain why this is
“optional” in the section

How Much of that Picture Do / Have to Code?

Interface

"

on IBM extensions
ItemR eader
‘O‘ft.'f)n..al XML I Job Specification Language
{ Code [I
1 %
JobOperator Job Step ItemProcessor ()
Y Y Y [
JobRepository Item\riter

|

It turns out ... relatively little

Much of the processingis handled by the vendor implementation of the JSR 352 standard.
Your code sits behind standard interfaces and is called by the JSR 352 runtime.

g 5 B, I Chmpsseitinem

The JSR 352 diagram presented on the previous chart may leave you with the impression a batch programmer has
a lot of work to do when writing a batch program for JSR 352. It turns out, that’s not really the case. Much of the
diagram from the previous chart represents functional components a JSR 352 runtime implements. The Java
developer is responsible for a small slice of that.

The picture above shows the diagram from before, with the boxes in light blue representing what the JSR 352
runtime provides, and the elements in light yellow the things the batch programmer provides. They are:

* The Java code that implements the ItemReader for a job step. The ItemReader is what reads in data from
wherever the batch developer determines is needed for that step. It could be a file, it could be a database, it
could be a web service ... wherever the data resides, the batch programmer implements the read pattern in
the ItemReader class file that is specified for a job step. (It is specified in the JSL, which we talk about below.)

* The Java code that implements the ItemProcessor for a job step. This is what does the processing on the
data. This is the business logic for the batch processing step.

* The Java code that implements the ItemWriter for a job step. This is what writes the data out to wherever
the batch programmer indicates. The JSR 352 runtime controls the frequency of the writes based on the

|” |”

“chunk interval,” which you can think of like a “commit interval.

* The Job Specification Language (JSL) file is an XML file that tells the JSR 352 runtime environment the
specifics for the job. For example, it is in the JSL that you indicate details about each step, including the Java
class files that represent the ItemReader, ItemProcessor and ItemWriter for the job step.

* Finally, the JSR 352 specification calls for a JobOperator, but something has to invoke the JobOperator to
submit the job. That “something” could be provided by the vendor (in the case of IBM, that’s the REST
interface we'll talk about in a bit). Or it could be a little bit of customer code the developer writes to invoke
the JobOperator interface to submit and control the job. That’s why this is listed as “optional” — whether it’s
needed or not is dependent on who or what provides the function to invoke the JobOperator.

13

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Job Step Types — Chunk and Batchlet

O s e s s e s e s e s e s e f s s s O e e e e e o s s s s s s s s 4

+ What we typically think of as a “batch job” — an
Chunk Step iterative loop through data, with periodic

Job Step commits of data written out during processing
+ This involves the ItemReader, ItemProcessor and

ItemWriter interfaces shown earlier.

Batchlet Step A job st.ep with much less structur.e = itis
called, it runs and does whatever is in the code,

Job Step and ends

» This job step type is useful for operations that
are not iterative in nature, but may take some
time ... a large file FTP, for example

» This is also useful for encapsulating existing
Java main () programs into the JSR 352 modei

A multi-step job may consist of either ... or both

14 © 2018, 1BM Corporation

JSR 352 defines two types of job step implementations — the “Chunk step” and the “Batchlet step.”

The chunk step is what we just covered when discussing the JSR 352 specification diagram. It is what we typically
think of when we think of “batch processing.” This step type requires an ItemReader, ltemProcessor and
ltemWriter to be implemented.

The “batchlet” job step type is a bit simpler ... it is implemented with a single Java class file. The JSR 352 runtime
invokes that class file and the batchlet step runs. It does whatever the batchlet class is written to do. When it
finishes the runtime sees that and moves on to the next step.

Batchlet job steps are useful for job tasks that are not necessarily loop / iterative in nature. For example, a step
that FTPs a large file is one you would want to invoke and have it process until complete. Trying to implement an
FTP step using the Chunk-style ItemReader, ltemProcessor, ltemWriter model would be challenging. But with the
batchlet step model it is far easier — the class implementation for the batchlet step is called, it does the FTP and it
returns.

The batchlet model is also handy for re-hosting existing Javamain () programs. Those may be batch programs
written many years ago, before some of the vendor frameworks were available. Rather than re-write those
programs from scratch, you can modify them to fit within the JSR 352 batchlet job step model and run them as
part of JSR 352 processing.

A job can consist of steps written as chunk or batchlet. A multi-step job may consist of both. Any given job step
must be either chunk or batchlet, however. A given job step can’t be a mix of both.

14

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

H

o

h-Level Example ... to lllustrate the Key Concepts

e SimpleBonu: =3

CEEEEE— First step is a Batchlet that writes SV Format
generate |[—» account data to a file. This data will —
- —
-~ serve as input to the second step
E—
ddB)
a onus L .5 second step is a Chunk step that reads the ACCOUNT
-~ 4 . . . table
records from the file, adds a fixed integer value
I /I to each account, and inserts a row in a table —p
Jeks Speeiiflcatian ’
Lasrgmags {ISL3 file

Not real-world, but useful to illustrate essential
JSR 352 concepts. What does packaging look like?

15 € 2008, 188 Corporation

To illustrate some of this we’ll use one of the samples provided with IBM’s JSR 352 implementation. This sample
application is based on a hypothetical account balance model. The purpose of the sample is to illustrate reading
account balances in, adding a fixed “bonus” value to each account balance, and then writing the updated account
data to a database file.

This sample is implemented as two job steps. The first job step — “generate” is a batchlet step that creates a file
with account data written in CSV (comma-separated value) format. That file is then used as input to the second
job step — “addBonus.” The “addBonus” step reads from the file created in the first step, adds the fixed bonus
amount to each account, and writes it out to a database table.

It’s a very simple approximation of a banking or other account-oriented batch job. It’s simple enough to follow
and it shows the essential elements of JSR 352 batch processing. Let’s now take a look at what the packaging of
this application looks like, then we’ll take a look at the Job Specification Language (JSL) file for it.

15

= WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

A Peek Inside the Sample Application WAR file

Application tﬂ BonusPayout-1.0.war

Developer WEB-INF
. —\classes\com\ibm\websphere\samples\batch
- L \artifacts
[/GenerateDataBatchlet.class 4 SteplBatchlet
A [JGeneratedCSVReader.class
(JBonusCreditProcessor.class Step 2 Chunk
(JAccountJDBCWriter.class ‘ ltemReader
8 (other class files) i ItemProc.essor
The “How to write JSR 352 L \beans ItemWriter
applications” topic is)
important, but outside the 8 (data bean class files)
scope of this overview L \util
discussion. (] (utility class files)
L \classes\META-INF\batch-jobs The “lob Specification
[] SimpleBonusPayoutJob.xml Language” (JSL) file, which

we’ll look at next ...

This deploys into the Liberty Profile server’s /dropins directory,
or pointed to with <application> tag like any other application

16 © 2018, I1BM Corporation

The sample batch application is packaged in a WAR file format. Inside the WAR file are the Java class files that
implement the two steps of the job, some data beans and utility class files, and a the Job Specification Language
file.

Note: the topic of writing JSR 352 application is an important topic, but it falls outside the scope of what this
document is designed to do. Most Java programmers will find writing JSR 352 applications fairly easy.

In the WAR file there is a Java package in which the Java class files reside. Under the \artifacts directory the
class files that implement the two steps can be found — one class for the batchlet step, and three classes for the
chunk step. Why three? Because a chunk step must implement an ItemReader, ltemProcessor and ItemWriter.
That’s what you see in the chart — three classes, each indicating the role it servers: “reader,” “processor,” and
“writer.”

The JSL file is found under the META—-INF directory. We’ll take a look at that file in the upcoming charts.

This WAR file is deployed into a Liberty Profile server environment like any application is deployed — it may be
placed in the /dropins directory and be detected and loaded dynamically, or it may be placed wherever you’d
like and pointed to with an <application> elementin the server.xml. The key point here is that when
packaged the JSR 352 batch application is really no different than any other application from a deployment point
of view.

16

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

JSL: Job Specification Language, Part 1

Properties are a way to get values into your
batch job. They can be specified in the JSLas
shown, and overridden at submission time
using IBM’s REST interface (shown later)

<?xml version="1.0" encoding="UTF-8"?2>
<job id="SimpleBonusPayoutJob">

<properties>
<property name="numRecords" value="#{jobParameters['numRecords']}?:1000;" />
<property name="chunkSize" wvalue="§{jobParameters[’'chunk8ize*]}?:100;" />
<property name="dsJNDI" value="#{jobParameters['dsJNDI']}?:java:comp/env/jdbc/BonusPayoutDs;" />
<property name="bonusZmount" value="#{jcbParsmeters['bonusAmount']}?:100;" />
nans="tablelams” valus="#{jckParanstars | "tablaNamns="] 37 BCT AT, BOCOTNT ¥ S
-~

1{;5;.3:@

< propsr

<step id="generate" next="addBonus">
l::> <batchlet ref="com.ibm.websphere.samples.batch.artifacts.GenerateDataBatchlet">
<properties>
<property name="numRecords" value="#{jobProperties['numRecords']}" />
</properties>
</batchlet>

elavars The first step is defined as a Batchlet. The

Java class file that implements the Batchlet
indicated. The property totell the Batchlet

(second part on next chart)
how many records to create is specified.

The job specificationis taking shape. What about
the second step? That’s shown next...

17 © 2018, I1BM Corporation

Let’s now take a look at the Job Specification Language (JSL) file for this sample application. We'll do this in two
parts. The first part shown here covers the job properties and the details of the first step.

Job properties provide a way to define values for things and have those values apply to the steps in the job. For
this sample job there are certain values that can be specified — such as the number of account records the first
step will generate and write to the file. Or the “chunk” (commit interval) size to use when writing the records to
the database table in the second step. Also things like where the database table is and how to reach it.

Job properties can be overridden at the time of job submission. Or the default values in the JSL file can apply.
This is an operational choice left to the people operating the runtime environment. The sample application
provides default, and in the absence of overrides provided at job submission time, the defaults will apply.

The first step is specified. It is identified as a <batchlet> step, and the ref= names the Java class file that
implements the batchlet. This job step has one property —and that’s the number of records to write out. It
inherits the value for numRecords from the properties section for the job. If the numRecords valueis
overridden at job submission time, the value supplied at submission would be used.

We can see this taking shape. There’s really not much special about this ... it’s just an XML file that spells out the
details of the job so the JSR 352 runtime can make sense of the things and know what to do.

Note: those familiar with z/OS Job Control Language (JCL) files should spot the conceptual similarities. Different
syntax of course, but conceptually they are very similar.

17

- WP102544 atibm.com/support/techdocs
— IBM WebSphere Liberty Java Batch Technical Overview

JSL: Job Specification Language, Part 2

irst part i hart
e pa naprevisschoan] The second step is defined as a Chunk

<step id="addBonus"> step. The “chunkSize” (commit interval)
E> <chunk item-count="#{jobProperties['chunkSize']}"> is a property from earlier.

<reader ref="com.ibm.websphere.samples.batch.artifacts.GeneratedCSVReader"/>

<properties>
<property name="bonusZmount" value="§{jocbProperties['bonusAmount’]}" />
</properties>
</processor>

<writer ref="com.ibm.websphere.samples.batch.artifacts.AccountIJDBCWriter">

E> <processor ref="com.ibm.websphere.samples.batch.artifacts.BonusCreditProcessor">
: <properties>

<property name="dsJNDI" value="#{jobProperties['dsJNDI']}" />
<property name="tableName" value="#{jobProperties['tableName']}" />

</properties>
</writer>
</ k> The “reader,” “processor” and “writer” A property on the processor provides the
. step‘; Java classes are specified integer bonus to add to each account.

Properties on the writer indicate how to
reach the database and what table to use

Summary: the JSR 352 runtime provides the infrastructure to run
batch jobs; this JSL tells it what Java classes to use and other details
related to the operation of the job

18 © 2018, I1BM Corporation

This is the second part of the JSL file. This shows the second step, which is the chunk step type. It is identified as
a chunk step type with the <chunk> element. Notice also that the <chunk> element specifies the property
chunkSize, which you can think of as the commit interval. It’s the interval at which the ItemWriter is called to
write out the data that has been processed for that interval.

The first thing we see is that the step has three distinct elements —a <reader>, a <processor>, and a
<writer> element. That corresponds directly to the diagram from earlier where we showed the ItemReader,
ltemProcessor and ItemWriter requirement for a chunk job step for JSR 352. Each element specifies the Java
class file that implements the reader, processor or writer. We saw in the packaging chart earlier how those three
class files were part of the WAR file.

One of the properties we saw earlier was bonusAmount. That is an integer value that is used by the
ltemProcessor and added to the account balance for each account. That is really the “business logic” for this
sample application —read in account data, add a bonus, and write the results to a database.

The pieces of the puzzle come together — the JSR 352 runtime provides what this application requires to run. The
JSL file tells the runtime about the job — the class files to load, the properties to use. The Liberty Profile server
provides the rest —the JVM in which to operate, the function to access the database, etc.

18

? -_=-f___..—f WP102544 atibm.com/support/techdocs
—_—— = IBM WebSphere Liberty Java Batch Technical Overview
Checkpoint/Restart
<chunk item-count="5" />
i:ggig ' Interval specified by i tem-count on <chunk>
Racord i element for step in JSL
Record :
Record L———3 Commit! You may externalize with a property in the JSL,
Hegors. | Write checkpoint allowing you to pass the interval in at submission
Record : info to JobRepository
Record | . .
Record i Container wraps a transaction around update
Record L__—-49 Commit! processingand commits at the specified interval
Record Write checkpoint
Re°°rg E info to JobRepository Container persists last-good commit point, and in
zec“ ! the event of restart will pick up at last-good commit
ecord :
Record L---3 Commit!
Record 'y — Wite checkpoint o Thisis a function of the JSR 352
Recoxrd | ~— infotojobRepository .
Record | container. Your code does not
Record ! .
Record L-—-9 Commit! need to handle any of this.
Record Write checkpoint
info to lobRepasitons
3 FOE A po———

The JSR 352 concept of “chunk” processing implies processing some number of records, then committing the
updates made up to this point. This is standard checkpoint processing. The difference from historic batch
processing is this checkpoint processing is handled by the JSR 352 container, and not your batch code.

The interval is specified with i tem—count on the <chunk> element in the job specification language (JSL) file.
The chart is showing a checkpoint interval of 5, which means every five records the container will do the commit
processing. This includes persisting the checkpoint information about the “last known good” commit interval.
This is used when the step is restarted and the container needs to pick up where it left off last.

If some exception occurs in the middle of a chunk interval, then the container performs a rollback.

The item-count value can be hard-coded as shown, or it can be defined as a job property and passed in at the
time of job submission. In either case, the container receives the item-count value and processes the job step
with that interval in mind.

19

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

lit/Flow Processing

Simple sequential ... O, you may organize the steps You specify in the JSL the

e S to execute like this: way you want the splits

Step A m and flows to process
Split steps will process on

Il

I

TSolit” separate threads in the
Step B P .
N o— execution JVM
[. E Step B .
g i\) “Flow” SteP execution r.n.ay be
Step C Eir \ ! defined as conditional on
:I: E Step C [Step D]: previous step completion
1
I\ 1

| | Keep steps logically
Step D
rTIﬁ A\ ©organizedwithin a
s & single job, but
process in splits and

@ flows if needed

Same job steps, butjob on right
20 organized torun with splitsand flow

I

Step E

1

© 2018, 1BM Corporation

Another capability of the JSR 352 specification is the ability to organize job steps into “splits” and “flows.”

Imagine a simple sequential processing of five job steps, as illustrated by the picture on the left in the chart.
That’s how batch processing is frequently done. Steps are run in the order indicated.

Now imagine the ability to designate the step processing contain a “split” where steps are then run concurrently,
and the ability to designate several steps into a logical unit of execution called a “flow.” The diagram on the right
in the chart above illustrates this. The definition for splits and flows is contained within the JSL for the submitted
job. We’re not showing the details for that here.

When a job has a split (as shown in the simple example above), the container will dispatch the processing onto
separate JVM threads. That allows concurrent processing of steps.

Note: as the architect of your batch processing, it is up to you to understand what steps require sequential
processing and what steps may be run concurrently. The point here is that the JSR 352 specification permits the
definition of splits and flows, which gives you the flexibility to organize your job processing according to how you
see it best being performed.

20

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Step Partitions
Fimer-grained parellel processing than splits-flows ... this is wéhin a job step:

JobstepA | - You may partltl?n based on record
_______________ ranges (passed-in parameters) or

A by indicating number of partitions

4
'\ /' (your code determines records
* * * ranges accordingly)
Process Records | | Process Records Process Records The co?tainer then disPatChes
11000 1oo1-2000 | ™% | sop1-1o000 execution on separate threads
= I ' within the JWI with the specified
I t _ﬂ ﬂ properties for different data
Java Execution Java Execution Jave E;eeatim ranges.
Thread Thread Thread
‘ | l When all partitions end, step ends
l If nature of job step lends itself to
StegEnd A parallel processing, then partition
across execution threads
21 © 2018, 1BM Corporation

Now imagine you have a job step in which you, as architect of the batch processing, know can be further
partitioned to run in parallel. In JSR 352 language this is known as partitioning. It is concurrent processing within
a job step.

To do this, something has to indicate the data ranges each concurrent partition is going to act upon. Your batch
code is written to take as input either specified data ranges, or to calculate the data ranges based on a specified
number of partitions. The JSR 352 container then dispatches execution across separate threads within the JVM,
and each partition then runs concurrently.

For step processing where the organization of the data permits this, partitioning can result in reduced execution
time. That is the value of parallel processing -- concurrent execution permits a reduced elapsed time, given
sufficient resources to execute in parallel.

21

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Listeners

Think of “listeners” as “exits” - points during execution of batch processing where your
code would get control to do whatever you wish to do for that event at that time:

Each is an

implementable interface: Receives control ...
JoblListener ... before and after a job execution runs, and if exception thrown
,St@plﬁigt@mgf . before and aftera step runs, and if exception thrown
ChunlkListener
ItemReadLlistener o brefore and ufter an tem is read by an Ttem reader, and i exception thrown
ltemPro
Itermi@ritelistener o Befinre and after an frem is writtes by an e writer, and if sxception
Skiplistener o iR B

Retrylistener . il & retr;

E‘?ﬁ & 00, 1 Oenpaceiian

Finally, we have listeners. These are like “exits” in that they provide points during job and step execution where
the container will turn control over to code you provide so that code can execute. What your listener code does
is up to you. Itis based on processing you wish to do at that time.

There are 8 listeners provided with the JSR 352 implementation. They are shown on the chart above. For
example, the first one -- JobListener -- provides an exit point before the job begins step execution, and after (as
well as calling your listener code if an exception is thrown). SteplListener provides a callout exit before and after
steps. And the list goes on ... begin and end of a chunk, begin and end of an itemRead operation, etc.

22

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

IBM Implementation
And Extensions

23 £ 2018, 188 Corporation

23

= WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

Built on Liberty Profile as the Java Runtime Server
___________________________________ Liberty Profile 8.5.5.6 and above

i i * IBM’s fast, lightweight, composable server runtime
* Dynamic configuration and application updates

| | JVM Stays Active Between Jobs
P * Avoids the overhead of JVM initialize and tear
down for each job

| JaveEET IBM Extensions to JSR 352
* JSR 352 s largely a programming standard

* IBM extensions augment this with valuable
___________________________________ operational functions

vV

All Platforms Supported By Liberty Profile -JVM support: dlspatche{r alnd endmmt servers

*Including CICS TS V5.3 + APAR PI63005 provide a distributed topology for batch job execution
» Inline JSL {8.5.5.7)
= Batchevents(8.5.5.7)

WebSphere Liberty Java Batch

24 © 2018, 1BM Corporation

The JSR 352 implementation provided by IBM is built on Liberty Profile (all platforms). It is released along with
the update of Liberty Profile to support the Java EE 7 standard, which contains the JSR 352 support as noted
earlier. The first release with the Java EE 7 and JSR 352 support is 8.5.5.6.

Liberty Profile provides a good platform for running batch jobs because it is designed to be composable (you
configure only those functions you need), which means it is also lightweight (only the memory needed for the
functions you configure).

When batch jobs execute in a persistent server model — meaning, the server and its JVM stay up and active even
when batch jobs are not executing — then the cost of initializing the JVM and tearing it down for every batch job is
eliminated. That’s a key consideration when the number of batch jobs being executed is a larger and larger
number. A few batch jobs a day is likely not an issue, but when you get into hundreds or thousands of batch jobs
a day, the cost of starting and stopping the JVM each time adds up. Better to leave the JVM active and execute
the batch jobs in the same JVM.

Note: this is where Liberty Profile’s dynamic nature becomes an asset. You do not need to stop and restart the
Liberty Profile server when you deploy a new JSR 352 batch application. You do not need to stop and restart the
server with most configuration changes. You can avoid the cost of server stops and restarts for many (if not
most) changes you may need to make to your Liberty Profile configuration.

The JSR 352 standard is primarily a programming interface standard, which means many of the operational
considerations are left unaccounted for by the standard. This is where vendors, such as IBM, are free to extend
the standard with their own function. This is what IBM has done in a number of key areas. The rest of this
presentation will focus on those extensions and what they provide.

24

- WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

Integration with WebSphere Developer Tools (WDT)
flom Eelipes Plsifierm Eclipse-based ISR 352 tocling

- ———————————— - | e Croote Bascnses Close

JSR 352 Embedded
Development Liberty with
Tooling Java Batch

O~k

JSR 352 Application

{1

I

Understandsthe JSR 352 requirements,
helps you build the implementation
classes, and creates the JSL

Embedded Liberty allows yo

pedded Libet vy S

and run your applicationall w th| n your
Eclipse framework

TechDoc: http://www.ibm.com/support/techdocs/atsmastr.nsf/Weblndex/WP102639

wasDev: https://developeribm.com/wasdev/docs/creating-simple-java-batch-application-using-websphere-developer-tools/

25 © 2018, I1BM Corporation

WebSphere Developer Tools (WDT) is a plugin to Eclipse that helps you develop and test JSR 352 applications. It
provides the Eclipse-based view of developing an application, with wizards and assistance in creating the job
steps and the JSL to describe the job. The result is an application package.

WDT also has the ability to host a Liberty runtime in which you can deploy and test your Java batch application.
WDT is aware of this embedded Liberty, and is capable of deploying applications to the directory for Liberty to
detect and load automatically. Further, WDT makes use of the REST interface of the IBM JSR 352 runtime to
submit the job and run it. (We explore the REST interface in a few charts. For now, understand that WDT makes
use of one of the IBM extensions to the JSR 352 runtime to run the batch job.)

25

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

JobRepository Implementation

—1 ItemReader
ERRS——) The JSR 352 standard calls for a
PR 4 4 JobRepositoryto hold job state
JobOperator Job — Step ItemProcessor . . .
‘ 1 information, but it does not spell
' ' ' out implementation details
|:> JobRepository <:| L1 ItemWriter

IBM WebSphere Liberty Batch provides three options for this:

1. Anin-memoryJobRepository

2 Balatienal dateboss mrmdned LalBamnnelbos

MUV NN QG R L e SO B S U?‘!l R R @mmfwwwumt £

foet e s mesr-pradusiion eredrenrianis whareare

2 produst iz callee) far

Table creation is automatic. Relatively easy to drop one set of
tables and re-configure to use a different data store.

26 © 2018, I1BM Corporation

As we noted earlier, the JSR 352 specification calls for a JobRepository, which is a mechanism to maintain
information about the state of batch jobs. The specification does not spell out the details of how that is to be
implemented, just that one must exist to be JSR 352 compliant.

IBM is providing three mechanisms for this JobRepository. Which you use is really a function of what you need,
based on what you’re using the Liberty Profile JSR 352 runtime for. If your use-case is ad hoc development and
testing, and you don’t require the information to persist across server starts, then an in-memory JobRepository is
available. This makes configuring the JobRepository as simple as possible.

The next level of robustness is the file-based relational Derby database. This will provide data persistence across
server restarts. It’s something you can set up and use without having to involve your database administrators
because creating the database is a simple matter of running a Java command. The database manifests as a set of
UNIX files. It works. It’s great for more advanced testing.

Finally, the next step up is a true relational database product such as IBM DB2. When the JSR 352 runtime
environment is being used for production or near-production use-cases, then this is likely what you want to use.

26

- WP102544 atibm.com/support/techdocs
—R IBM WebSphere Liberty Java Batch Technical Overview

REST terface to JobOperator

—1< ItemReader
|:> Job Specification Language The JSR 352 standard calls for a

A JobOperator interface, but leaves to
1 111 1emProcessor vendors to implement function to

Step
T T T handle external requests for job

v v L - o =
submission, control and monitoring
JobRepository

JobOperator }—f Job

‘ -

ItemWriter

The IBM WebSphere Liberty Batch REST interface provides:

1. A RESTful mterface for job submission, control and momtormg
iy Somirizs fnewn suielide the Lilserty Prefile ruriimme

T f@r’ @mﬁh@m@m@m amﬂ] aamﬂl%wﬂnz@mgm

2 IO meulecd corvies the esecifics of tha inb fo he sulwnitfes]

TPl ﬁmgwwwj T N ISiseasr R v Rl I IRl TPl Rl s JM WG sr et I I I LIRS iR)

with Infiermation auch o e mppllostion manms, the JBL file netmes, znd oy @

This permits the remote submission and control of jobs; it provides
a way to integrate with external systems such as schedulers

27 © 2018, I1BM Corporation

The JSR 352 specification calls for a JobOperator function. But that function is an interface that needs to be
invoked by some other code to do job submission, job monitoring and job control. The standard specification
does not spell out what that code must be ... that is left to developers or vendors to implement the user interface
function that drives JobOperator.

IBM provides a RESTful interface on the front of JobOperator. This provides a way to remotely submit and control
batch jobs that run in this JSR 352 environment.

Note: this also serves as the foundation for the function used to integrate external schedulers. That function is a
command line interface that uses the REST interface on the back end to submit and manage jobs. The command
line interface (known as “batchManager”) can be invoked by a scheduler. The batchManager then uses
REST/JSON to submit the job. More on this in an upcoming chart.

JSON is passed with the REST call to provide information about the job to be submitted. The JSON is interpreted
by the IBM REST interface function, and that’s used to invoke the JobOperator methods to submit the job.

Note: an alternative is for the developer to provide their own submit / monitor / control function that uses the
JobOperator interface. The IBM sample “SleepyBatchlet” does just that — it packages a servlet that takes a user’s
standard HTTP URL and submits and manages jobs. The REST interface eliminates the need for developers to
spend time on a submission / control mechanism. That allows the developer to focus more time on
implementing the batch business logic.

The REST provides three levels of security: transport security in the form of an encrypted SSL connection; access
security in the form of authentication; and authorization security in the form of role-based access to functions of
the JSR 352 runtime.

27

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

d Line Client to REST Interface

—1 ItemReader
REST/JSON XML | Job Specification Language
E> batchManager | < REST ‘:] ’
1 * 1.1
JobOperator }—— Job —— Step ItemProcessor
1
> command y ' '
JobRepository J ItemWriter
Person Script

The batchManager command line interface client provides:

1. A way to submit, monitor and control jobs remotely using a command line interface
On the same system, or adifferent system ... different 0S ... doesn’t matter: TCP/IP and REST/ISON

2. Uzes the REST interface on the IBR Jawva Batch seresr

Bl ¢ meEny o anmmen coaermsilor posssellall far e 2ffaweds BN mundlosen il Sfeams snpemdl] e

el e
WVINLI MICUHI UIC U SULUITILY HIVUCT IS T CITe Ll JUb, GULTICTILILALIVI, TUTC WUOCU GuLe oo

3. External schedulers can use this to submit and monitor job completion

batchManager parametersallow the script to “wait” for Java to complete. Parametersallow for discovery of
job log information, and a mechanism to retrieve the job log for archival if desired.

B

€ 2008, 183 Corparation

The batchManager function is a command line client that uses REST/JSON and the REST interface to submit and
monitor jobs. The batchManager function eliminates the need for you to construct a REST client; the
batchManager is the REST client with a command line interface.

The batchManager function provides a way to integrate with external schedulers. Those schedulers are already
equipped to run shell scripts or submit programs. A shell script can be written to invoke the command line
interface offered by batchManager. A “—wait” parameter can be used to have the script delay completion until
the Java batch job in JSR 352 completes. When the Java batch job completes, the “—wait” parameter will release
and the script ends. That tells the scheduler the job has completed.

28

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

z/0S: Native Program Command Line Interface

Same LPAR, cross-memory

A
(\ 1
— ItemReader
Job Specification Language
batchManagerZos E]
— Job L * Step 11 ItemProcessor
1
> command : :
JobRepository %1 ItemWriter

o [

Person Script

Same batchManager command line function, but ...

1. Not a Java client, so do not need to spin up a JVM for each invocation
Saves the CPU associated with initiating the JVM, and when there’s a lot of jobs this can be significant

2. Cross-memory
Wary low [stency, and since ne network then nae 351 and mansge

3. Same access security model
Once the WOLA connection is established, the same “admin,” “submitter” and “monitor” roles apply

e © 2018, 1BM Corporation

Another variation on the batchManager command line interface is one for z/0S only ... it’s called
batchManagerZos and it uses the cross-memory WOLA function to access the Liberty Profile server and invoke
the JobOperator. It does not use the REST interface.

What’s the advantage? As the chart indicates, this client (unlike the regular batchManager client), is not a Java
client, so no JVM needs to be initiated for this. On z/OS that can be particularly important when overall CPU is
being carefully monitored. A few invocations of the Java client batchManager might not be noticed, but
thousands per day might. The batchManagerZos client avoids that.

This client uses WOLA, which is cross-memory, which means there’s no TCP network stack involved. There’s no
need to coordinate certificates because there is no SSL ... it’s cross-memory. The limitation there is, of course,
that batchManagerZos and the Liberty Profile server with JSR 352 must be in the same z/0S LPAR.

The same authorization roles as batchManager exists —admin, submitter and monitor.

29

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

e e Graphical interface to list jobs and
of the AdminCenter their status, and view job logs

Java Batch

PR wr PRP— © Compen
=7 © Compena COMBLETED Job Pazazmetess YD
: shoopy banchiet 1 SoepyEanct hecSargie 10 Sy o 5= © Complesa
- i You can display the job
” ype— R log from the toolas well. |
P— WE— © comes
sy bt The Job Repositoryis jewce: © Corpaas
Sy dtin queriedanda listof s © Coman
-t jobs is provided, — © com
—_— including theirstatus. | .
soepy batchiet ot BecSarrpie 1 © Comples
soopy bactiet ™ ey Bt iecSarrgie 10 © Compiens
stoogy tancte s PRRPE— FRED © Complema

In the 16.0.0.4 release of Liberty, the AdminCenter was updated to include a "Java Batch" tool that appears in the
list of tools in the toolkit. This Java Batch tool is really a graphical interface to the information in the Job
Repository: it retrieves from the database the information about the jobs and formats the result on the browser
screen. There you can see the status of each job, and retrieve the job log for viewing as well.

It should be noted this is a "read only" function. You can't submit jobs through this interface or perform update
actions such as delete jobs. Those roles are performed through the batchManager or batchManagerZos
command line utilities. This tool is good for people responsible for monitoring jobs but do not have the authority
to submit or change jobs.

30

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

minCenter Java Batch Tool

>

Update to include Job 'STOP' and
Job 'RESTART'

Tool appears in the Toolbox
of the AdminCenter

Eaplore. Server Corfiy

Java Batch

Instance ID JES Job Name Application Name Submitter Instance State Actions ﬁ:t):g

123 WLPADM SleepyBatchletSample-10 bob N~ Dispatched v
122 DEMO2 SleepyBatchletSample-1.0 bob ° Completed

21 DEMO2 SleepyBatchletSample-1.0 bob ° Completed |8

The "Actions" button now
allows you to act upon a job --
either Stop a running job, or
Restartajobthatisina
restartable state

31

© 2018, 1BM Corporation

In the 17.0.0.1 release of Liberty, the AdminCenter Java Batch tool has been enhanced to provide additional
operational controls for a batch job. For a job that's currently running, you can invoke a 'Stop' action against the
job. For a batchlet step, that will stop in accordance with the stop() method that's implemented. For a chunk
step, the current checkpoint interval processing will be stopped, the transaction rolled back to the last persisted

checkpoint value, and the job stopped. Upon restart, a batchlet step simply runs again. A chunk step will pick up
at the last checkpoint value.

31

- WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

Inline JSL

Provides a way to maintain Job Specification Language (JSL) file outside the batch job
applicaticn package file

Libssrisy Sersmar

JSL

IBM Workload
Scheduler

batchManager
Other — -
Enterprise atchManagerZos . o '
Schedulers (Command Line) ——jobXMLFile=/path/file
File System
S bM.anEJaI &L \7,\(/ .
somission W A JSL Files
oy K[

Pravidoc flavihilitv in whaoara vnir maintain I1€1 filac:
T ANV IV ll‘"l"l'l‘, L L2 ,v“ I AR A AR R A"]} L] - LR AT~ o)

I1SI
1. Package JSL in application EAR or maintain outside EAR and point to at submission
2. Can use from command line utilities with --jobXMLFile= parameter
3. IBM Workload Scheduler can be configured to pass in the JSL file to use

= B 0B, e T

Earlier we showed the Job Specification Language (JSL) file packaged with the application. When submitting a job
using the Command Line Interface, the JSL to use is named using the —— jobXMLName= parameter. That name
gets passed to the server over the REST interface. The container then looks in the application packaging directory
and uses the named JSL.

Another way to accomplish this is to use IBM’s “Inline JSL” extension, which allows you to maintain the JSL
outside the application packaging and provide the JSL at time of job submission. From the Command Line
Interface this is done with the ——jobXMLF 1 1e= parameter providing the path and name of the JSL file. The
IBM Workload Scheduler product can be used to store JSL for use when submitting jobs.

32

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Integration with Enterprise Schedulers

s N
batchManager 1
Enterprise » (Command Line) - | [|temReader
\ XML | Job Specification Language
Schedulers REST
— B 1
batchManagerZos 1 * EE
. WOLA JobOperator Job Step ItemProcessor
L (Command Line) 1
T ¥ T
v v v
JobRepository L1 ItemWriter
JJ

The batchManager and batchManagerZos utilities provide this

W batchManag,er isa command line interface that mtegrates with REST interface
Tl s o ~¥":w||°r j

T hatrhtdlanasnrfes e e sermmrmans livs Tnbariass ok v wemwnn WRATH] &

F= mwlmw*mmu&w el N RSl PR St I WL WM W MR e WY U WV B G SSleb ieeal %MW J.UIL"@IV!U@IU T EELeS

Submit jobs, check status of jobs, retrieve job logs

33 & 2008, IB& Corporstion

Integration with enterprise scheduler functions (either from IBM or other vendors) is always a topic of interest
when Java Batch is discussed. IBM’s WebSphere Liberty Batch provides a command line interface function to
provide this integration. The enterprise scheduler can interface with the command line to submit jobs, check the
status of jobs and retrieve job logs.

Two command line interface utilities are provided: batchManager and batchManagerZos. Both have the same
command line syntax. The difference is batchManager uses RESTful calls to access the REST interface of the IBM
WebSphere Liberty Batch server; batchManagerZos uses the cross-memory WOLA support of Liberty z/OS to
access the server. If your enterprise scheduler is on the same LPAR as the IBM WebSphere Liberty Java Batch
server, the use of WOLA provides a very fast connectivity mechanism. The advantage of batchManager (REST
integration) is it can be used from any platform.

33

- WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

IBM Workload Scheduler Integration

™ —1 ItemReader
SON XML
- Job Specification Language
--s[REsT| [.

workload JobOperator Job 1—* Step 1.1} itemProcessor
Scheduler 1

T T T

Y Y Y

JobRepository %1 ItemWriter

IWS can integrate directly with the REST interface of IBM JSR 352

1. Eliminatesthe need for the command line interface utilities
Simplicity of design ... Command line interfaces may be used by other enterprise schedulers

2. Can be used by IBM Liberty Batch on z/0S or on distributed operating systems

3. Supports IBM's inline 5L file function
4. A recorded demonstration can be seen here: http: //youtu.be/VESTYIN-MPO

IBM Workload Scheduler is an enterprise scheduler product used to manage and coordinate batch job workloads.
It has the ability to interact directly with the IBM JSR 352 REST interface for submitting batch jobs and monitoring
their progress.

This function is enabled in IBM Workload Scheduler (IWS) by way of a configurable “plugin” to IWS. This is
noteworthy because it means you do not need to be at the latest level of IWS to use this. And because it’s using
REST, which is a network-based protocol, this can be used to integrate with IBM JSR 352 on any platform.

If you’re interested in seeing more on this function, see the video at the link shown on the chart.

34

- WP102544 atibm.com/support/techdocs
W IBM WebSphere Liberty Java Batch Technical Overview

Batch Events [EXXEA

Emit messages to a JMS topic space at key events during the batch job lifecycle:

Liberty Server Topic Space Monitoring
O Process
I e o e o e e e . ”
: IBM JSR 352 Batch
1 .
: /jobs Subscription
: Job/Step —/instance va
! —/submitted s 4
e —/dispatched
—/completed A monitoring process can subscribe
to a genera| topic of mterest
—/stopped
TT L /Eailed
server.xml —/jobLogPart example, batch/] obs/*) and get
<batchJmsEvents> —/starting sl
JMS configuration elements —/started
MQ or WebSphere default messaging — /stopped
</batchIJmsEvents> P T R, (T P, n % 5 a :_ -
—/failed rFroviaesreai-time | signtuin io
—/step the state of the batch jobs
This is not the complete topic list. Afew other /started
topic leafs exist. See the Knowledge Center and /checkpoint
search for string twlp batch monitoring
- - /completed

. http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102603

© 2018, 1BM Corporation

When a JSR 352 batch job is running, the job will run through a number of states. The “Batch Events” function is
designed to emit an “event” (a message) to a JMS topic space as the batch job progresses through the various job
states. This is useful for processes that wish to monitor the progress of jobs.

This feature of IBM JSR 352 is optional. It is configured with an update to the server .xml for the IBM JSR 352
Liberty instance. That XML update enables the function and provides information about the JMS specifics -- the
MQ queue manager and topic, or the Default Messaging location and topic.

The topic space is organized into a tree structure, and the IBM JSR 352 runtime will emit events associated with
the leaves of the tree based on the job state. Monitoring processes may subscribe to specific leaves, or use
wildcards to get events associated with multiple leaves.

Again, this provides a way for processes to subscribe to the topic and monitor the state of processing.

35

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Mu Itl-JVM Support: Job Dispatchers, End-Points

Liberty Profile
Liberty Profile Queue [

‘ |

1 |

1]

_____________ 1 i

- ™ Submit > | i
REST 1BM Extensions <props> :l |

: H—s
e A= S
| | .
WOLA ||) Submit

"""""""" <props> \ Liberty Profile
Dispatcher SiBus or MQ ' |BM Extensions |

Separation of duties ... Executors

1. Server designated as dispatchers handle job requests, and places them on JMS queue

The endpoints listen on the JMS queues and pick up the job submission request based on criteria you set to
indicate which iobs to pick up {more on that next chart)

2. Endpoint servers run the batch jobs
Deploy the bateh jobswhere mast sppropriate; co-losate seme bateh joks and cthers havea their cusmesrser

3. JMS quewes {either Servios i i Bus or RO st
Tl pratdies g vredlamizm Tor gueaniie ws fole prior b esscuifsn

E 6 AR e Cermerstion

The next extension we’ll cover is the multiple-JVM support for JSR 352. In a nutshell, what this does is a provide a
way to separate the duties, and have a Liberty Profile server act as a dispatcher of jobs, and have other Liberty
Profile servers act as executors where the jobs run.

This mechanism is built around JMS queuing — either the integrated Service Integration Bus (SIBus) of Liberty
Profile or MQ. The Liberty Profile server that acts as the dispatcher receives the job submission requests through
the REST or WOLA interfaces as outlined earlier. The dispatcher then puts the job submission request on the
gueue. From there the servers designated as endpoints pick the messages up and run the jobs.

But wait ... what server picks up what job requests? That’s based on a selection criteria you set in the executor
servers. We'll cover that on the next chart. For now the thing to understand is the executor servers will only pick
up those messages they are configured to pick up.

36

= WP102544 atibm.com/support/techdocs
y == IBM WebSphere Liberty Java Batch Technical Overview

Multi-JVM Support: Get Jobs Based on Endpoint Criteria

Liberty Profile Queue A property in the
server.xml defines the
pommm———— Submit pr———— ~ “message selector” criteria
IBM Extensions <props> IBM Extensions | to use to pick up messages.

You can designate — by
server —what criteria to use.

f M f
1 H 1
: - :
I | . I
1 i ° 1
1 H 1
| : Submit |
<props>

DispatCher SRR EXECUtOI’ server .xml

. messageSelector="com ibm ws batch applicationName = 'BatchJoba’
AND com_ibm ws batch . myProperty = 'myValue'” Ml
Submit jobs and have them run only Have jobs run in intended Not limited to system, not
when intended server starts and servers based on selection limited to platform ... may
picks up the submission request criteria of your choice span systems and platforms

5 http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102600

© 2018, 1BM Corporation

The previous chart mentioned that the endpoint servers will only pick up job submission requests that the
executor server is configured to pay attention to. That’s done with a property in the JMS listener configuration
element. The property ismessageSelector=, and it indicates what messages in the queue to pay attention
to and pick up for execution.

The chart offers three examples with numbered blocks. Those numbered blocks correspond to these notes:

1. The simplest example is where the endpoint is configured to look for and pick up a job request based on the
application name. Imagine you have five executor servers, and one is configured with the message selector
for BatchJobA. Then only that server will run that batch job. The other executor servers will see the job
submission request, but since their message selector configuration is for something other than BatchJobA
they will ignore it. Only the server configured for BatchJobA will run it.

2. This shows the way you would code an “or” condition for two batch jobs.

3. You are not limited to just the application name. You can make the executor select based on your own
custom properties in the job submission message. This example is showing selection based on two things —
the application name equaling “BatchJobA” and the custom property myProperty equaling a value of
“myValue.”

The value of this extension is it provides a way to separate job submission from job execution. It allows jobs to be
submitted and wait in the queue until a server is started that is configured to run the job. You can use this to
have jobs run in only those servers you want them to run in (for example, on z/0S a server with a particular WLM
service classification associated with it). This model is also not limited to just one server or just one platform ...
because it’s using JMS queuing between the dispatcher and executor, it’s possible to have this span servers and
platforms. There’s considerable flexibility in what can be done with this.

37

WP102544 atibm.com/support/techdocs

IBM WebSphere Liberty Java Batch Technical Overview

Multi-JVM Support: Partitions

Liberty Profile

Job Executor(s)

This is an extension of the earlier “Step Partition” feature, but here across separate JVMs

Partition

Executor(s)

Partition Executor Message Selector
messageSelector="com ibm ws_batch_applicationName

[
:/ ---------- ._—-\‘| l, __________ ._-_\\.
i IBM Extensions i Queue i IBM Extensions E
e | s =
| i Submit \ i
| d <props> | 4
L]
. L
Dispatcher e
<props> | <~ ~o_
~ =~ -~
N T~~a
SIBus or MQ So < e >
~
~
~
~
h ~
Job Executor Message Selector hENY
~
messageSelector="com ibm ws batch_applicationName = RN .
~
~
'BatchJobA' AND com ibm ws batch work type = Job' " A

N

i
i
1
i
1
i
1
I

\
IBM Extensions |

38

'BatchJobA' AND com_ ibm ws_batch_work type =

'Partition' "

© 2018, 1BM Corporation

Another functional extension came in with the 8.5.5.8 fixpack. This is an extension of the earlier “Step Partition”
feature, but whereas the JSR 352 specification provided for partitioning workload across threads in a single JVM,
this splits across multiple JVMs.

This function is built on the multi-JVM support with a dispatcher and executor servers and a messaging queue
between the two. A distinction is now made between a “job executor” and a “partition executor.” The job
executor is what listens for and picks up dispatch messages with “work_type=Job”, and it then partitions the job
and places the partition requests back on the queue with “work_type=Partition”. The partition executors listen
for and pick up these partitioned job requests and execute them. The top job (running in the Job executor, waits
to hear back from the partition processes. When they all complete the top job moves on to the next step.

38

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

CICS Liberty — JSR-352 Messaging

. CICS region
Engine Data
CICS region ——— Y
| Liberty)VM | -
(RESTl (" Libertyvm | submit | ——— || |
batchManager : Y < <props> 'l |
batchManagerZos i o ¥ S
WOLA l\ ,: Submit
_____________ Rl ity CICS region
Dispatcher \ s :
P : Liberty JVM i
=] | (=) |
Job repository

CICS usage Executors
1. Liberty JVM server can function as job Dispatcher, Executor or messaging engine
2. JMS with IBM MQ client mode connectivity required for MQ support with messaging
engine

b3 WIE s TS &0 rmvm e rnemel fo #los oy vbmme Salnnmely abom s lundslh et abarmt B
oFn Sl fed TUGH 2 LIS SN i BN BRG LlaPEtd W BUISS B SHE GG AN o ol DRAIIIIR: SSUSehs S5l BORENNRA NI, DGy Was

Finally, here's a chart showing how you would accomplish the dispatcher/executor model using the support for
Liberty inside of CICS.

39

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Liberty Profile /<server directory>/logs
EjA EjB |—/joblogs - _

______________ — /<application name A>
i IBM Extensions E |:> L /<date>
L /instance. #
Sl ; L /execution.#

[Jpart.#.log
— /<application name B>
L <date>
etc.

Job logs separate from the server log, separate from each other
1. Each job’s logs are kept separate by application name, date, instance and execution

2. The IIBMJ JSR 352 REST interface has a method for discovery and retrieval of job logs
g bl Wi ’ e commmE Mne Diberfarews el Thite lisbewe fol log retriesal

3. Also publish the logs to the jobLogPart topic (as noted earlier) as each log part
closes or on a timer basis

40 © 2018, I1BM Corporation

Job logging does not seem a very exciting extension, but when hundreds or thousands of jobs are being run then
the ability to logically organize job logs becomes very helpful.

The way job logging works with IBM’s JSR 352 is to place logs into a directory tree based on the application name,
the date, the job instance number and the job execution number. The chart above illustrates this. The logs by
default go into the /1ogs directory for the server, but can be configured to go to any location you specify.

Once the job log has been written, the REST interface (or the batchManager command line client) will return the
location of the job log for a given job execution. If you wish to retrieve the job log, the REST interface will allow
you to do that.

40

- WP102544 atibm.com/support/techdocs
W IBM WebSphere Liberty Java Batch Technical Overview

SMF 120.12 Records for Java Batch XXX}

Liberty Profile

Records written at end of each step and at end of job

{ IBM Extensions \i SMF 120.12 record sections:

i i Standard Header 1/ record
i ! Subsystem Section 1/ record
4 Identification Section 1/ record
e Job R Completion Section 1/ record
I Processor Section 1/ record

: Accounting Section 0-n/record
Job Step) USS Section 1/ record

3
—
—— I:J‘> Noteworthy fields in the SMF 120.12 record:

Job Step Record Type - step end / job end
\TJ I:;> Server identification - which Liberty ran the job
Y : Job identification - job, step, execution id, app name, etc.
d i Timestamps - job submit, start, end; each step start / end
Job Step : o JES Job Identifiers - batchManagerZos JES jobname/ID
' @Ewﬂ Exit Status - job or step completion code

Fé& , CPU times - total CPU by job / step; GP and zliP
—/ @ Accounting - useful for accounting §/ chargeback

a1 http://www-03.ibm.com/support/techdocs/atsmastr.nsf/Weblndex/WP102668

© 2018, 1BM Corporation

SMF (Systems Management Facilities) is a mechanism on z/0OS that allows components to write activity records in
a highly efficient way. The content of the SMF record written by a component is based on what the component
architects wish to capture. For Java Batch, the SMF record is 120, subtype 12.

A summary review of what's included with the 120.12 record is shown on the chart. The information include the
job and step start and stop times; information about the server where the job ran; the exit status; as well as CPU
time used information.

For a more complete review of the new SMF 120.12 record, see the WP102668 Techdoc. The URL is on the chart.

41

= WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

Profile server.xml

-
U'
5<

<feature>servlet-3.1</feature>

<feature>batch-1.0</feature>

<feature>batchManagement-1.0</feature>
</featureManager>

*®
®

<batchPersistence jobStoreRef="BatchDatabaseStore® />
<databaseStore id="BatchDatabaseStore™
dataSourceRef="batchDB" schema="JBATCH" tablePrefix="" />

Relatively simple updates to server.xml ...
1. Thebatch-1.0 featureenables the JSR 352 core functionality
2. The batchManagement-1.0 feature enablesthe REST interface, job logging, and

l@ﬁ&%@mmm@w is ﬂ@mﬂi@@]

Some details left out of this chart, of course ... but the key point is
that configuring the support is based on updates to server.xml

42 © 2018, 1BM Corporation

Finally, enablement of the JSR 352 functionality within a Liberty Profile server is relatively simple. Two
<feature> elements enable the function:

* batch-1.0 .. thisis what enables the core JSR 352 support. This does not enable the REST interface, the
job logging, or the multi-JVM support. You can run batch jobs with just batch-1.0 but you would need some
function to invoke the JobOperator interface to submit the job (and as noted, the SleepyBatchlet sample
illustrates how this is done).

* batchManagement-1.0 ... this enables the REST interface, multi-JVM support and the job logging support.
If you code this then batch-1.0 is assumed and is loaded if not specified. Coding both as shown works as well.

The JSR 352 environment needs to understand where the JobRepository is going to be, and the
<batchPersistence> element provides this. This element is used to contain the definitions about which
persistence model is being used and where the database is located.

Note: there are some details that are left off this chart. We are not showing the configuration XML for the JDBC
support, for example. We are not showing the JMS definitions for the multi-JVM support. Like any solution the
details become very important when you are trying to configure and implement the solution. This presentation is
focused on showing an overview, so for this chart we’re leaving details out to keep things focused on the key
points.

42

WP102544 atibm.com/support/techdocs

IBM WebSphere Liberty Java Batch Technical Overview

Overall Summary

Early Days of
Batch Processing
Over time ...

Modernization
Java
JSR 352

43

IBM Extensions

JSR 352
Standard

AR,

Liberty Profile

AR

Windows, AlX, Linux, Linux
for z Systems, z/0S ...

Tilualfigsle 1

Job logging

REST interface
Command line client
z/0S: native client

Multi-JVM capability

IBM
WebSphere
Liberty Java

Batch

® 2018, 18M Corporation

And this is the overall summary of the message delivered in the charts of this presentation.

43

WP102544 atibm.com/support/techdocs
© IBM WebSphere Liberty Java Batch Technical Overview

Other Documentation
8.5.5 Knowledge Center

http://www-01.ibm.com/support/knowledgecenter/SSAW57 8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp container batch.html

The Techdoc for this presentation
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102544

* Qverview presentation * Quick Start Guide
* Video (in case your access to YouTube is blocked) * Detailed step-by-step implementation guide

Other Techdocs related to Java Batch:
Job Classification: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102600
Batch Events: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102603
Batch Topologies: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102626
REST Interface: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102632
Using DFSORT and IDCAMS: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102636
Batch Migration: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102638
Lab Materials: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102639
Data Set Contention: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/Webindex/WP 102667
Batch SMF: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102668

nuiTitha Vidan
" WINANW

LA A R RV

https://youtu.be/tRhKTMb-5lo

Github Repository (for examples and other links)
https://github.com/WASdev/sample.batch.bonuspayout/wiki/WebSphereLibertyBatchLinks

44 © 2018, 1BM Corporation

A reference for other information.

44

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Charts providing additional detail

& 2018, 133 Corporation

45

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Listeners

@ 2018, 1BM Corporation

46

- WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

Job and Step Listeners

JobListener {
public void beforeJdob () throws Exception;
[your "before job" listener code |

}

i
1
1
1
1
1
1
1

SteplListener {
public void beforeStep () throws Exception;
[your "before step" listener code]

| SteplListener ({

: public void afterStep() throws Exception;
| [your "after step" listener code]

1

[

}

JobListener {
public void afterJob () throws Exception;
[your "after job" listener code |

}

H
1
1
1
L '
1
1
1

& @ 2018, 18M Corporation

Job and step listeners get control at various points during the execution of the job: at the start of the job, and the
end of the job, and at the start and end of each step. You implement the listener function you desire by coding to
the listener methods (as specified in the JSR-352 specification) and identifying in JSL the class that contains your
implementation. Then at the start of the job the container will call beforelob() and your code gets control; at the
end of the job the container calls afterJob(). For steps the same applies, except the methods called are
beforeStep() and afterStep().

These listeners are relatively simple in that they take no parameters as input, and they do not return anything.

47

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

: ChunkListener{

| public void beforeChunk () throws Exception;
| [your "before chunk” listener code]
1
[

}

Begin Chunk

ChunkListener{
public void onError (Exception ex) throws Exception;
[your "on error" listener code]

} Parameter "ex" specifies the
exception that occurred

Chunk
Iteration

: ChunkListener{
| public void afterChunk() throws Exception;
End Chunk | [your "after chunk" listener code]
j.; >
Lt Bollkack
" @ 2018, 188 Corperation

The chunk listener has both a beforeChunk() method and an afterChunk() method. But it also has an onError()
method for when an unhandled error is surfaced in the process of iterating through the chunk. When an
unhandled error surfaces, the container calls the onError() method and passes the exception that was surfaced.
Your onError() implementation code may then do what you wish it to do -- for example, log the exception that
occurred.

48

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

ItemRead Listener

""" Chunk Step ! ItemReadListener {
. E ’: public void beforeRead() throws Exception;
1 l n n :
R : [your "before read" listener code |
[

ItemReadListener {
public void onReadError (Exception ex) throws Exception;
[your "on error" listener code]

} Parameter "ex" specifies the

read exception that occurred

N

i ")
ltemWriter : : ItemR.eadLJ..stener { . - -
5 i1 public void afterRead (Object item) throws Exception;
5 i [your "after read" listener code]
STttt] } Parameter "item" specifies
the obiectread by the reader
- € 2018, 1BM Corporaticn

Within chunk processing we have the ItemReader, the ItemProcessor, and the ItemWriter. Each artifact has its
own set of listeners. On this chart we look at the ItemRead listeners. There are three: beforeRead(), afterRead(),
and onReadError().

The beforeRead() method is relatively simple: it is called at the start of each ItemReader operation. The listener
has no input parameters, and passes nothing back.

The afterRead() method takes as a parameter the item that was read by the ItemReader. That is passed in as an
object, and the listener may then do what it is designed to do with that information.

The onReadError() method is called by the container when an unhandled exception surfaces from the
IltemReader. The onReadError() method is called, and the exception that is surfaced is passed to the method.

49

- WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

ItemProcess Listener

TtemProcessListener {
public void beforeProcess (Object item) throws Exception;
[your "before process" listener code |

} Parameter "item" specifies the

item about to be processed.

------ Chunk Step -----;

i
1
1
1
1
1
1
1

ItemReader ‘

ItemProcessListener {

! I

H I

i ltemProcessor l : public void onProcessError (Object item, Exception ex)
i ‘___> | throws Exception;

i 1

!]

I]

H]

Error! [your "on error" listener code] Parameter "item" specifies the item
} being processed. Parameter "ex"
specifies the exception that occurred.

ltemWriter ‘
| | ItemProcessListener {
S | public void afterProcess(Object item, Object result)

I throws Exception;

| [your "after process” listener code] Parameter "item" specifies the

1} item processed. Parameter
"result" specifies item to be
passed to the item writer.

0 B 2008, 1880 Corporation

The ItemProcessor has three listeners -- beforeProcess(), afterProcess(), and onProcessError().

The beforeProcess() method is called at the start of the ltemProcessor operation. It takes as input the item object
that was read in by the ItemReader.

The afterProcess() method receives two parameters as input: the item object that was read by the IltemReader
(and processed by the ItemProcessor), and the result object from the ItemProcessor.

The onProcessError() method is called by the container when an unhandled exception surfaces from the
IltemProcessor. Two parameters are passed to this method: the object item that was passed to the processor
from the ItemReader, and the exception that was surfaced.

50

- WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

I TtemWriteListener {
------ Chunk Step []) - - - -
: public void beforeWrite (List<Object> items)
H throws Exception;
ItemReader | [your "before write" listener code] | Parameter “items" specifies the
: } list of items to be written.

ItemWriteListener {

public void onWriteError (List<Object> items, Exception ex)
throws Exception;
[your "on error" listener code] Parameter "items" specifies the list of
} item to be written. Parameter "ex"
specifies the exception that occurred.
ltemWriter

ItemWriteListener {
public void afterWrite (List<Object> items)
throws Exception;
[your "after write" listener code | Parameter "items" specifies the
} list of items to be written.

| | ltemProcess

Ei £ 201E, 130 Corporation

The ItemWriter has three listeners -- beforeWrite(), afterWrite(), and onWriteError().

When the container calls beforeWrite() it passes in the list of objects that was created by the reader/processor
chunk iteration. This is the list of items to be written by the ItemWriter. The listener gets this list of items so your
listener code may then do what you wish this listener to do; for example, log the items.

When the container calls afterWrite() it also passes in the list of items that [temWriter received.

The onWriteError() method is called when an unhandled exception surfaces during the ItemWriter processing.
The listener takes as input two things: the list of items the ItemWriter was passed, and the exception that was
thrown.

51

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Overview of Skip Exception Processing

Start ong may ocour in all three
== rewd, process, or write,
e In the absence of any “skippable exception™
ItemReader definition, an unhandled exception thrown results
s in the termination of the step.
Iteration Q
Loop You can define what types of unhandled exceptions
| ItemProcessor can be "skipped"; that is, ignored and processing
; {ﬁ continues. You may define what is skipped for the
I chunl step in the JSL. Example:
,;-r:"'“glf‘ . - %%Z
1 *fﬁff,% iﬁﬂ“ﬂmmﬂk?;f‘-ﬁ Lalkippable-—sscephion—classesl
1 T <includs class=*java.long . Eacoption” />
% o <agclude class="java.lio.FilsletFoundEscaptiom™/ >
= — = < fakippeble-ascaption-classass

This would skip all exceptions except java.io.FileNotFoundException
(along with any subclasses of java.io.FileNotFoundException).

ltemWriter Good practice: skip based on your own class names, never general
Java exception classes.
!

v The number of skips for a step may be limited by

Loog back o ltemReader the <skip-limit>JSL element. Default is no limit.
hest roesd @ humlle, oo e,

We're going to next cover skip and retry listeners, but before doing that let's do a brief review of how skip
processing is done. Then we'll cover the listeners for skip processing. Then we'll review retry processing, and
we'll finish up with the retry listeners.

In a chunk loop, the three artifacts present (reader, processors, and writer) may experience exceptions that you
wish to acknowledge but keep processing. The JSR-352 specification allows for defining what exceptions are
"skippable," and also how many skipped exceptions may be tolerated before the steps is failed.

Note: the skip processing only applies to exceptions that are defined as skippable. Unhandled exceptions without
a skippable definition will result in the termination of the step.

The definition of what is considered "skippable" is done in the JSL. This is defined at the <step> level. An
exception is skipped (that is, ignored) if it is defined on an <include> element. An exception is not skipped if it is
defined on an <exclude> element. So in the example on the chart, all exceptions that match java.lang.Exception
(which is all exceptions) would be skipped, except for java.io.FileNotFoundException (and subclasses of that)
because it's defined on an <exclude>.

That example is taken straight from the JSR-352 specification, and is (perhaps) not a very good example because
in general, skipping on general Java exceptions is not a good practice. It is better for your code to handle
exceptions, and then skip based on your own class names. Skipping on general Java exceptions may result in your
batch job skipping things you didn't intend to skip. In other words, be deliberate about what you're skipping.

The <skip-limit> definition in JSL can be used to protect against excessive skips. The default is no limit, so if you're
going to use exception skipping, you may want to consider limiting it to some reasonable number of skips before
you determine some bigger problem is occurring and failing the step.

52

- WP102544 atibm.com/support/techdocs
— IBM WebSphere Liberty Java Batch Technical Overview

What Happens With a Skipped Exception?

Stark
|
—d L ¥ Skipped read -- the container calls ltemReader again
HemRasder and t.he next item is re_ad. . .
Chunk If youimplement a SkipRead listener, you can capture information
Iteration Q about the skipped record for processing later.
toop Skipped process -- the container loops and calls
ftemEFocesSor * ItemReader again. The next item is read and
processed.

i s implement @ SkipProcesslistenar, you can captureinfor mation
about the item that wasn't processed.

— - —

Skipped write -- the container commits the transaction

, J with whatever was (or was not) written. The
[temWriter .
container starts a new chunk and calls the ltemReader.
% If you implement a SkipWrite listener, you can capture information
ahout ihe et of ems passed o the willer.

Licsesgs b ten D Fesssediey
st roett e haumlle, oo e,

L) & R, 1 Sorpnnaiien

The next question that comes up is this -- what happens when an exception is skipped? That depends on where
the exception that was skipped occurred.

When an exception is thrown by the ItemReader, and a skippable definition applies, then the container simply
calls temReader again and the next item is read. In this case you would very likely want to implement a SkipRead
listener so you can capture details about the item that was skipped. We'll cover the details of the skip listeners in
the upcoming charts.

When an exception is thrown by the ItemProcessor, and a skippable definition applies, then the container loops
and calls the ItemReader again, which results in the next item being read. That means the previous item read by
the ItemReader is never processed or written. So again, implementing a SkipProcess listener would be a good
practice to capture information about the item whose processing was skipped.

Finally, for ItemWriter a skipped exception is a bit more involved. The container will commit the current
transaction with the data written to that point. Then it starts a new chunk and calls the ItemReader. That may
mean that some data was not written out. The SkipWrite listener can be used to capture information about the
list of items the writer was working on. You can use that to analyze what was committed and what was not.

53

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Read, Process, and Write Skip Listeners

Important! Skip listeners only called if the exception is defined in JSL as "skippable."”

SkipReadListener ({

]
————— Chunk Step ----, ! . . . =
i | public void onSkipReadItem(Exception ex)
! throws Exception;
ItemReader | | | [your "skip read" listener code] Parameter "ex" specifies
: ' } the read exception thrown
' by the ItemReader

Error!
SkipProcessListener ({

1

1

| public void onSkipProcessItem(Object item, Exception ex)
! throws Exception;
|
1
1

ItemProcessor

[your "skip process" listener code] Parameter "item" specifies the item
} passed to the ItemProcessor.

Sklpplable Parameter "ex" specifies the exception
Errorl thrown by the ItemProcessor.
‘ | SkipWriteListener {
ItemWriter : | public void onSkipWriteItem(List<Object> items, Exception ex)
; : throws Exception;

Skippable | [your "skip write" listener code] Parameter "items" specifies the list of
Error! 'y item passed to the item writer.

b e Parameter "ex" specifies the exception

thrown by the ItemWriter.
54 © 2018, I1BM Corporation

This chart provides the details on the read, process, and write skip listeners.

The onSkipReadltem() method receives as input the exception that was thrown when the skip definition took
effect. The onSkipProcessltem() method receives as input the item object that was passed over from the
IltemReader, as well as the exception that was thrown when the skip definition took effect. Finally, the
onSkipWriteltem() method receives the list of items passed to it from the read/process loop, as well as the
exception that was thrown.

54

= WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

Overview of Retry Exception Processing

on Throw

M Skip Defined inJSL? @pﬂ FAIL step

Retry Lirnit Resched ? Skl Lirmit Reached? [FE5 0 FAIL shep
l’m im@ lm
FAIL step Digl ﬂﬁ;ﬁ 2 Perform Skip
=gl | . I il

= I
Rellbackand start chunk | 1 oI9S

Do mat again with checkpoint mmﬁmm%ﬂ%@m I ety i 5
roliback; retry. exception, you repeat until

item-count=1 L
gpecified retry limit is reached

% & 2018, |BM Corporstion

The JSR-352 specification also defines the ability to retry processing when an unhandled exception surfaces from
the reader, processor, or writer. What takes place depends on a number of things, so the flowchart shown above
is an attempt to take you through the processing:

» Starting at the top ... assume an unhandled exception is thrown in either the reader, processor, or writer.

* The next questions is whether there is a retry definition in the JSL for the step. The retry definition is very
similar to the skip definition, but the syntax is for retry, not skip. If yes, then we flow down to the retry limit
question; if no, then there's no retry attempted and we flow right to the issue of whether skip is defined.

* Ifretryis defined and the retry limit has been reached, then we fail the step. But if the limit has not been
reached, then it checks to see if a "no-rollback" definition is in the JSL. If yes (meaning: no rollback) then the
container simply retries the operation that threw the exception. If no (meaning no rollback is not defined,
therefore rollback), then the container rolls back the transaction and starts the chunk again, but this time
with a checkpoint of item-count=1. The purpose of this is to incrementally approach the point where the
exception occurred, and commit as much as possible in the event the same exception is thrown again.

* Moving back up ... no retry defined, so is skip defined? If not, then the exception results in the step being
failed. But if a skip is defined, then it drops down and asks whether the skip limit has been reached. If yes,
then the step is failed. But if not, then the skip operation is performed.

The retry processing is designed to overcome transient problems where the possibility exists that a retry will
result in success. The retry-limit is there to protect you against a case where the problem is not transient.
Repeated retries without success and no retry limit could potentially go on forever. So if you use retry processing
(and skip, for that matter), then limiting the retry attempts is a good idea.

55

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Read, Process, and Write Retry Listeners

Important! Retry listeners only called if the exception is defined in JSL as "retryable."

RetryReadListener {

————— Chunk Step ----, E . . - -
i | public void onRetryReadException (Exception ex)
! throws Exception;
ItemReader | | | [your "retry read" listener code] Parameter "ex" specifies
: ' } the read exception thrown
' by the ItemReader

Error!
RetryProcessListener {

public void onRetryProcessException (Object item, Exception ex)
throws Exception;

[your "retry process" listener code]| Parameter "item" specifies the item
} passed to the ItemProcessor.

ItemProcessor

Retryable Parameter "ex" specifies the exception
Error! thrown by the ItemProcessor.
‘ | RetryWriteListener {
ItemWriter :) public void onRetryWriteException(List<Object> items, Exception ex)
i throws Exception;
Retryable | [your "retry write" listener code] Parameter "items" specifies the list of
Error! : } item passed to the item writer.
b e Parameter "ex" specifies the exception
thrown by the ItemWriter.
56 © 2018, 1BM Corporation

Here we illustrate the three retry listeners, one for ltemReader, one for ItemProcessor, and one for ItemWriter.
The pattern is similar to what we've seen earlier: when an unhandled exception surfaces and the exception is
defined as one that is retryable, then the container will call the listener.

onRetryReadException() receives as input the retryable exception that was thrown.

onRetryPRocessException() receives as input the item that was passed to the processor and was being processed
at the time of the exception, as well as the exception that was thrown.

onRetryWriteException() receives as input the list of items that was passed to the writer and was being processed
at the time of the exception, as well as the exception that was thrown.

56

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

57

Partitioning

© 2008, 1884 Corporstion

57

- WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

Example: Partitions to Operate on Data by State Name

— Partition Becutor —
S 7, Y — "Operate only on
| > data matching:
' Step State = New York"
5 Two ways to accomplish this:
| Step))
’ ° ‘ — Partition Executor — 1. Staticvalues in JSL
: ° ' : -
; ° "Operate only on 2. Usinga partition mapper
5 —> ing: . "
: Step gata;mateling . We're showing three partitions,
5 ! State = Vermont
e : but you could have any number
of partitions based on your data
— Partition Executor — processing needs
"Operate only on
> data matching:
State = Ohio"
58 & 2018, 188 Corporation

To set the stage for the discussion on partitioning, we set up an example where we want three partitions; the first
partition only acts up on data records related to the state of New York, the second acts only on data records from
Vermont, and the third partition only acts upon data records from Ohio.

The question is how you can pass to the partitions the information about which state's data records they are to
act upon. This can be done using either static values in the JSL, or by using the partition mapper and then
programmatically pass the values to each partition.

For simplicity we're showing three partitions, but it could just as easily be five, or twenty, or whatever number
makes sense for your application.

58

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Partitions: "Fixed"* Definition in the JSL

E\ <step id="Stepl™> The property is defined to the

Sl e cenme==1 Q0K "Ce processor, and is indicated to
<reader ref="com.ibm.ws350.batch.Reader"> s
come from a Partition Plan,

</reader> o - . .
<processor ref="com.ibm.ws390.batch.Processor"> whichin this JSLis a fixed <plan>

<properties > ;
<property name="State" wvalue="#{partitionPlan['State']}"/>
</properties>
</processor>
<writer ref="com.ibm.ws390.batch.Writer"> The number of partitions is
SruniiREs set to a fixed value of 3.
</chunk>
<partition>
<plan partitions="3">
<properties partition="0" />
<property name="State" value="New York" /> q—_ | aproperty of "New York."

The first partition is given

</properties> It works on records related
<properties partition="1" /> to New York only.
<property name="State" wvalue="Vermont" />
</properties>
<properties partition="2" /> \
<property name="State" value="Ohio" /:A The other two partitions are given
</properties> properties of "Vermont" and "Ohio." They
</plan> work on their respective data records.
</partition>
59 *Itis possible to pass the values in as job properties and use JSL substitution. © 2018, IBM Corporation

This chart illustrates how the state values (in our example) can be passed to the partition using "fixed" definitions
in the JSL. Fixed is in quotes because, as the footnote says, the values can be passed into the JSL as job
properties. That would create JSL where "New York," "Vermont," and "Ohio" don't appear in the JSL itself, but
using substitution you can pass them in at time of job submission and achieve the same effect as having them
hard-coded as shown here.

Down in the <partition> section you can specify a <plan>and name the number of partitions, and properties for
each. In this example, the first partition (partition 0) is assigned the state name "New York." The second partition
is assigned "Vermont," and the third partition is assigned "Ohio."

59

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Partitions: Using the Partition Mapper

<chunk item-count="10000"> Thepropenyisdeﬁnedtp
<reader ref="com.ibm.ws390.batch.Reader"> thepﬂme$9nandd9wnm
</reader> the <partition> section a
<processor ref="com.ibm.ws390.batch.Processor"> <mapper> is defined.

<properties >
<property name="State" value="#{partitionPlan['State']}"/>

| </properties>
: </processor>
i <writer ref="com.ibm.ws390.batch.Writer">
f </writer>
| </chunk> You write this class to provide the parameter | Partitions= 3 —_—
string you need for your partitions. Array of String Values !
<partition>

<mapper ref="com.ibm.ws390.batch.StateNameBasedPartitionMapper”>

<properties >
<property name="States" value="#{jobParameters['States']}"/>

i </properties» <
i L
< /MEpper> "New York” , "Vermont” , "Ohic" ﬂ!==
i -] -, H
% < fpartitions ;
60 & 2018, 1BM Corporation

The alternative is to use the partition mapper, which is code you write that produces a set of parameters that is
used to determine the partition operations. In the <processor> section the property is defined just as it was with
the fixed example on the previous chart, but further down in the JSL the <partition> section includes a <mapper>
definition. The mapper is software you implement that is called by the container before the partitions are
created. The mapper returns a set of parameters to be used for the partitions, including the number of partitions
and the property value (the state name) to be used by each partition.

60

WP102544 atibm.com/support/techdocs
IBM WebSphere Liberty Java Batch Technical Overview

Partition Mapper Specifics

Bl cpartition>
<mapper ref="<your mapper class>"/>
</partition>

package javax.batch.api.partition;
ImpottisavaxtbatchiapatpartitiontPartitionPilant
public interface PartitionMapper {

/**

* The mapPartitions method that receives control at the
start of partitioned step processing. The method
returns a PartitionPlan, which specifies the batch properties
for each partition.

* ok ok

@return partition plan for a partitioned step.
* @throws Exception is thrown if an error occurs.
'

public PartitionPlan mapPartitions() throws Exception;

Returns the PartitionPlan. A sample
implementation of the PartitionPlan is provided
as PartitionPlanIimplin the JSR-352 specification.

61 © 2018, 1BM Corporation

The partition mapper is specified in the JSL using the <mapper> element. This points to the Java class that
implements your mapper. A sample implementation of the PartitionPlan is provided as PartitionPlanimpl in the
JSR-352 specification.

61

- WP102544 atibm.com/support/techdocs
= IBM WebSphere Liberty Java Batch Technical Overview

Overview: Partition Collector and Analyzer

P [P itk Peantiitizsin Pearbiiim
Thread Thread Thread Thread
‘ ' For chunk step, called after every chunk
Analyzer | checkpoint, then again at the end; for batchlet,
called once at the end of the batchlet
Your code Collector . f .
AAA E
: Your code Collector i
: < Your code Collector
Serializable
Objects Your code

|
|
|
|
|
]
'
i
i
i
i
'

Tﬂhese are optional interfaces yo‘u may implement if you wish to

RN | g S (R Jp——— [oy o R m o g o g

Al\ li— e W e o
Wﬂl!ﬁ%@ﬂuﬂu LR MIIUWM@MII IS Satm WHI MLMI!@MH! S A L= = MRS

partition and passe: ower io the
lyzer, wehich runs in the parent thread.

62 B 2018, 1B Corporstion

Two more interfaces are introduced here: the partition collector, and the partition analyzer. Collectors run in
each partition. For chunk steps they are called after every chunk checkpoint, and for batchlets they are called at
the end of the batchlet. They send the information collected over to the analyzer, which runs on the parent
thread.

62

- WP102544 atibm.com/support/techdocs
— IBM WebSphere Liberty Java Batch Technical Overview

Overview: Chunk Step with Partitions

Each partition: Start
Reducer: beginPartition Before any l’ -— = l
Mapper: mapPartitions partition runs I : i
I ItemReader
l Iteration @
Loop
Analyze Collector Data [« @ /‘\,:.‘ ltemProcessor
I
Partition End: AnalyzeStatus {g ﬁ

Runs continuously while
partitions are active

Yes

— ————— —

| O Y
After all partitions end:
Rollback Indicated No Rollback ltemWriter
Reducer Reducer
rollbackPartitionStep Before Step Complete {T} +
Send Collector Data

i1

Reducer

After Step Complete Loop back and call ItemReader,
s ezist] Wiiimes mrneres maskars,

&2] R, R Cerpesciien

On this chart we're bringing together the collector and analyzer, as well as another function called the partition
reducer. The JSR spec says this about all three:

Since each thread runs a separate copy of the step, chunking and checkpointing occur independently on each
thread for chunk type steps. There is an optional way to coordinate these separate units of work in a partition
reducer so that backout is possible if one or more partitions experience failure. The PartitionReducer batch
artifact provides a way to do that. A PartitionReducer provides programmatic control over logical unit of work
demarcation that scopes all partitions of a partitioned step. The partitions of a partitioned step may need to
share results with a control point to decide the overall outcome of the step. The PartitionCollector and
PartitionAnalyzer batch artifact pair provide for this need.

The reducer gets control before any partition runs, then again after all partitions end. While the partitions are
running, the collectors in each partition are getting control after every chunk checkpoint (for batchlets at the end
of the batchlet) and they send data back to the parent thread where the analyzer receives and analyzes the data.
The analyzer runs continuously while the partitions are active.

When all the partitions end, then the reducer gets control again. What it does depends on whether rollback is
indicated or not. Finally, the reducer gets control one final time after the step completes.

63

- WP102544 atibm.com/support/techdocs
— IBM WebSphere Liberty Java Batch Technical Overview

Batch Contexts - Job Context

getJoblName {}
getInstanceld {}
cutionTd{} Thiis data is not persisted to the

jolb repository: it does not exist
getBatchStatus () past the life of the job.
setTransientUserData (Object data) This information stays local to
getTransientUserData () the JVMin which it is set.
setExitStatus (String status) This is useful for passing
getExit8tatus {j informration between steps in &

jeb.

&4 © 2018, IBM Corporation

Finally, we'll explore two more things -- Job contexts and Step contexts.

Job contexts provide a way for your batch step code to set and get information about the job during the
execution of the job. The data it can get includes the job name, job properties, and status information. It can
also set transient user data, and set the exit status for the job.

The transient user data is just that -- transient -- and is not persisted to the job repository. It exists during the life
of the job, but not after. The information stays local to the JVM in which it is set. It's useful for passing
information between steps in a job that executes within a single JVM.

64

—a— WP102544 atibm.com/support/techdocs

IBM WebSphere Liberty Java Batch Technical Overview

Batch Contexts - Step Context

gets tepiame {}

getStepExecutionId () The "step transient” data is different
o from the "job transient” data.

getProperties ()

getBatohsStatus {} The "step persistent” dats is stored in

getException () the job repository at each checkpoint,

) or at the end of a batchletstep.
getMetrics ()

setTransientUserData (Object data) For partitions each
getTransientUserData () partition gets its own
unique step context, so

you can not communicate
across partitions this way.

setPersistentUserData(Serializable data)
getPersistentUserData ()
sstExi tEtatus (String status}

Tt e 55 .

getExitStatus {} The step comntext can be 2 good way to
communicate among the components of a
step, such as between the reader and the
reader listener or a skip listener.

&5 © 2018, 130 Corporation

Step context is similar to job context in concept, but it is not the same thing as job context. With the step context
function you can get and set information as shown on the chart. You can set either transient user data or
persistent user data. Transient user data is not persisted, and exists only as long as the step exists. Persistent
user data is stored in the job repository, and exists beyond the life of the step.

Some quick notes about step context -- you can't communicate across partitions using step context, as each
partition gets its own unique step context. But step context is a good way to pass information between elements
within a step, such as between the ItemReader and the reader listener or a skip listener.

End of Document

65

