
IBM WebSphere Liberty Java Batch Technical Overview

1 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

1

IBM WebSphere Liberty

Java Batch
Technical Overview
© 2018, IBM Corporation

IBM WebSphere Liberty Java Batch Technical Overview

2 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Topics to be Discussed

• Brief Overview of Batch Processing
Including background on Java Batch evolution

• Overview of JSR 352
A review of the key elements of the standard

• IBM Implementation and Extensions
A review of how JSR 352 is implemented by IBM, including
extensions to the standard that provide additional
operational features and benefits

IBM WebSphere Liberty Java Batch Technical Overview

3 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Batch Processing …
… and what led up to Java Batch

IBM WebSphere Liberty Java Batch Technical Overview

4 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Batch Processing Has Been Around a Very Long Time

A picture from the 1960s, and batch processing pre-dated
this by several decades, or even centuries, depending on

what is considered a “computer”

There has long been a
need to process large
amounts of data to arrive
at results from the data

There continues to be the
same need today

It is unlikely the need to
do processing in batch will
go away any time soon

The need persists, the approach has evolved …

IBM WebSphere Liberty Java Batch Technical Overview

5 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Magnetic Tape
Magnetic Disk

COBOL

Tape, Disk, Memory,
Cloud Services, Rules

Engines, etc.

Java

Evolution: Data Storage and Programming Languages

Punch Cards
Paper Tape

FORTRAN
Assembler

Change is driven by need. So what is driving the
trend towards Java for batch processing?

IBM WebSphere Liberty Java Batch Technical Overview

6 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Things Creating Push to Java for Batch

Desire to Modernize Batch Processes
Motivation behind this takes many forms – new business needs; some

update to an existing batch program is needed and it’s seen as a good

opportunity to re-write in Java; separate business logic into rules engine

for more agile processing

Availability of Java Skills
Particularly relative to other skills such as COBOL.

z/OS: Ability to Offload to Specialty Engines
Workload that runs on z/OS specialty engines (zAAP, zIIP) is not counted

towards CPU-based software charges.

IBM WebSphere Liberty Java Batch Technical Overview

7 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Can Java Run as Fast as Compiled Code?

Comparably … and sometimes faster*:
• Batch processing is by its nature iterative, which means

Java classes prone to being Just-in-Time (JIT) compiled

at runtime

• Java JIT compilers are getting very good at optimizing

JIT’d code

• z/OS: System z processor chips have instructions

specifically designed to aid JIT-compiled code

• COBOL that has not been compiled in a long time is

operating with less-optimal compiled code that does not

take specific advantage of chip instructions

*
Results vary, depending on many factors. This is not a promise of performance results.

IBM WebSphere Liberty Java Batch Technical Overview

8 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Open Standard

JSR 352

Open standards

allow for code

portability and the

development of

larger libraries of

re-usable code

Vendor Batch
Frameworks

Examples: IBM

Compute Grid,

Spring Batch

Framework removed

a lot of coding effort

from developer and

allowed focus to be

on business logic

The Evolution of Java Batch …

Roll Your
Own

Typically built

around the JVM

launcher concept

Processing logic all

custom-code, often

specific to the batch

program, with only

some re-use

IBM WebSphere Liberty Java Batch Technical Overview

9 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Overview of JSR 352

IBM WebSphere Liberty Java Batch Technical Overview

10 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

The Process of Creating an Open Standard

The group works to create a

vision and a document of

the proposed specification.

After review and

acceptance, it becomes a

published specification.

IBM led this group, with

involvement from people

from several other

companies.

Formation of
Working Group

Initial Release of
Standard Specification

https://jcp.org/en/jsr/detail?id=352

The specification details the

requirements and interfaces.

The JSR 352 specification

was released in May 2013,

and has been accepted as a

component of the Java EE 7

specification as well.

Release of Vendor
Implementations

Vendors

release

products and

provide

extensions

for additional

value

Individuals

working on the

challenges

independent of

one another

IBM WebSphere Liberty Java Batch Technical Overview

11 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Very Abstract Representation of a “Batch Job”

Job

We offer this as a way to set the stage for
the discussion of the JSR 352 specification

1

Job Step

Job Step

Job Step

2
• Read data
• Process data
• Write data

• Read data
• Process data
• Write data

• Read data
• Process data
• Write data

3

A way to
initiate and
control job

4

A way to describe
the details of the
job to whatever

does the job
submission and

control

5

A way to keep
track of the state
of the execution

6

IBM WebSphere Liberty Java Batch Technical Overview

12 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

The JSR 352 Diagram to Describe the Architecture

You’ll see how this is implemented in an
upcoming section of this presentation

A job is a logical
representation of the

batch processing

1

A job may consist of
one to many steps

2

An interface to code
that reads data

3

An interface to
code that

processes data
4

An interface to code
that writes data

5

A function and interface
used for job submission and

job control

6

A file that declares the
specifics of the job and the
steps contained in the job

7

A mechanism to persist
information about the state
of jobs in the environment.

For example, a set of
relational database tables.

8

IBM WebSphere Liberty Java Batch Technical Overview

13 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

How Much of that Picture Do I Have to Code?

We explain why this is
“optional” in the section

on IBM extensions

It turns out … relatively little
Much of the processing is handled by the vendor implementation of the JSR 352 standard.

Your code sits behind standard interfaces and is called by the JSR 352 runtime.

IBM WebSphere Liberty Java Batch Technical Overview

14 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Job Step Types – Chunk and Batchlet

Job Step

Chunk Step • What we typically think of as a “batch job” – an

iterative loop through data, with periodic

commits of data written out during processing

• This involves the ItemReader, ItemProcessor and

ItemWriter interfaces shown earlier.

Job Step

Batchlet Step • A job step with much less structure … it is

called, it runs and does whatever is in the code,

and ends

• This job step type is useful for operations that

are not iterative in nature, but may take some

time … a large file FTP, for example

• This is also useful for encapsulating existing
Java main() programs into the JSR 352 model

A multi-step job may consist of either … or both

IBM WebSphere Liberty Java Batch Technical Overview

15 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

High-Level Example … to Illustrate the Key Concepts

SimpleBonus

Job Specification
Language (JSL) file

generate
First step is a Batchlet that writes
account data to a file. This data will
serve as input to the second step

CSV Format

addBonus
Second step is a Chunk step that reads the
records from the file, adds a fixed integer value
to each account, and inserts a row in a table

ACCOUNT
table

Not real-world, but useful to illustrate essential
JSR 352 concepts. What does packaging look like?

IBM WebSphere Liberty Java Batch Technical Overview

16 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

The “Job Specification
Language” (JSL) file, which

we’ll look at next …

A Peek Inside the Sample Application WAR file

Application
Developer

BonusPayout-1.0.war

WEB-INF

\classes\com\ibm\websphere\samples\batch

\artifacts

GenerateDataBatchlet.class

GeneratedCSVReader.class

BonusCreditProcessor.class

AccountJDBCWriter.class

(other class files)

\beans

(data bean class files)

\util
(utility class files)

\classes\META-INF\batch-jobs

SimpleBonusPayoutJob.xml

The “How to write JSR 352
applications” topic is

important, but outside the
scope of this overview

discussion.

Step 1 Batchlet

Step 2 Chunk
ItemReader

ItemProcessor
ItemWriter

This deploys into the Liberty Profile server’s /dropins directory,
or pointed to with <application> tag like any other application

IBM WebSphere Liberty Java Batch Technical Overview

17 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

JSL: Job Specification Language, Part 1

<?xml version="1.0" encoding="UTF-8"?>

<job id="SimpleBonusPayoutJob">

<properties>

<property name="numRecords" value="#{jobParameters['numRecords']}?:1000;" />

<property name="chunkSize" value="#{jobParameters['chunkSize']}?:100;" />

<property name="dsJNDI" value="#{jobParameters['dsJNDI']}?:java:comp/env/jdbc/BonusPayoutDS;" />

<property name="bonusAmount" value="#{jobParameters['bonusAmount']}?:100;" />

<property name="tableName" value="#{jobParameters['tableName']}?:BONUSPAYOUT.ACCOUNT;" />

</properties>

<step id="generate" next="addBonus">

<batchlet ref="com.ibm.websphere.samples.batch.artifacts.GenerateDataBatchlet">

<properties>

<property name="numRecords" value="#{jobProperties['numRecords']}" />

</properties>

</batchlet>

</step>

:

(second part on next chart)

Properties are a way to get values into your
batch job. They can be specified in the JSL as

shown, and overridden at submission time
using IBM’s REST interface (shown later)

The job specification is taking shape. What about
the second step? That’s shown next …

The first step is defined as a Batchlet. The
Java class file that implements the Batchlet is
indicated. The property to tell the Batchlet

how many records to create is specified.

IBM WebSphere Liberty Java Batch Technical Overview

18 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

A property on the processor provides the
integer bonus to add to each account.

Properties on the writer indicate how to
reach the database and what table to use

JSL: Job Specification Language, Part 2
(first part on previous chart)

:

<step id="addBonus">

<chunk item-count="#{jobProperties['chunkSize']}">

<reader ref="com.ibm.websphere.samples.batch.artifacts.GeneratedCSVReader"/>

<processor ref="com.ibm.websphere.samples.batch.artifacts.BonusCreditProcessor">

<properties>

<property name="bonusAmount" value="#{jobProperties['bonusAmount']}" />

</properties>

</processor>

<writer ref="com.ibm.websphere.samples.batch.artifacts.AccountJDBCWriter">

<properties>

<property name="dsJNDI" value="#{jobProperties['dsJNDI']}" />

<property name="tableName" value="#{jobProperties['tableName']}" />

</properties>

</writer>

</chunk>

</step>

</job>

The “reader,” “processor” and “writer”
Java classes are specified

Summary: the JSR 352 runtime provides the infrastructure to run
batch jobs; this JSL tells it what Java classes to use and other details

related to the operation of the job

The second step is defined as a Chunk
step. The “chunkSize” (commit interval)

is a property from earlier.

IBM WebSphere Liberty Java Batch Technical Overview

19 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Checkpoint/Restart

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

<chunk item-count="5" />

Commit!

Commit!

Commit!

Commit!

Container wraps a transaction around update
processing and commits at the specified interval

You may externalize with a property in the JSL,
allowing you to pass the interval in at submission

Container persists last-good commit point, and in
the event of restart will pick up at last-good commit

This is a function of the JSR 352
container. Your code does not
need to handle any of this.

Interval specified by item-count on <chunk>
element for step in JSL

Write checkpoint
info to JobRepository

Write checkpoint
info to JobRepository

Write checkpoint
info to JobRepository

Write checkpoint
info to JobRepository

IBM WebSphere Liberty Java Batch Technical Overview

20 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Simple sequential
step processing ...

Split/Flow Processing

Step A

Step B

Step C

Step D

Step E

Step A

Step B

Step C Step D

Step E

... or, you may organize the steps
to execute like this:

You specify in the JSL the
way you want the splits
and flows to process

Split steps will process on
separate threads in the
execution JVM

Step execution may be
defined as conditional on
previous step completion

Keep steps logically
organized within a
single job, but
process in splits and
flows if needed

“F
lo
w
”

“Split”

“Flow”

Same job steps, but job on right
organized to run with splits and flow

IBM WebSphere Liberty Java Batch Technical Overview

21 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Step Partitions
Finer-grained parallel processing than splits-flows ... this is within a job step:

Job Step A

Process Records
1 -1000

Process Records
1001-2000

Process Records
9001-10000

Java Execution
Thread

Java Execution
Thread

Java Execution
Thread

Step End

You may partition based on record
ranges (passed-in parameters) or
by indicating number of partitions
(your code determines records
ranges accordingly)

When all partitions end, step ends

The container then dispatches
execution on separate threads
within the JVM with the specified
properties for different data
ranges.

If nature of job step lends itself to
parallel processing, then partition
across execution threads

IBM WebSphere Liberty Java Batch Technical Overview

22 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Listeners
Think of “listeners” as “exits” -- points during execution of batch processing where your
code would get control to do whatever you wish to do for that event at that time:

JobListener ... before and after a job execution runs, and if exception thrown

StepListener ... before and after a step runs, and if exception thrown

ChunkListener ... at the beginning and the end of chunk, and if exception thrown

ItemReadListener ... before and after an item is read by an item reader, and if exception thrown

ItemProcessListener ... before and after an item is processed by an item processor, and if exception

ItemWriteListener ... before and after an item is written by an item writer, and if exception

SkipListener ... when a skippable exception is thrown from an item reader, processor, or writer

RetryListener ... when a retryable exception is thrown from an item reader, processor, or writer

Each is an
implementable interface: Receives control ...

IBM WebSphere Liberty Java Batch Technical Overview

23 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

IBM Implementation
And Extensions

IBM WebSphere Liberty Java Batch Technical Overview

24 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Built on Liberty Profile as the Java Runtime Server

IBM Java SDK

Liberty Profile

Java EE 7

All Platforms Supported By Liberty Profile
*Including CICS TS V5.3 + APAR PI63005

Liberty Profile 8.5.5.6 and above
• IBM’s fast, lightweight, composable server runtime
• Dynamic configuration and application updates

JVM Stays Active Between Jobs
• Avoids the overhead of JVM initialize and tear

down for each job

IBM Extensions to JSR 352
• JSR 352 is largely a programming standard

• IBM extensions augment this with valuable
operational functions

• Includes:
 Job logs separated by job execution
 REST interface to JobOperator
 Command line client for job submission
 Integration with enterprise scheduler functions
 Multi-JVM support: dispatcher and endpoint servers

provide a distributed topology for batch job execution
 Inline JSL (8.5.5.7)
 Batch events (8.5.5.7)

IBM Extensions

JSR 352

WebSphere Liberty Java Batch

IBM WebSphere Liberty Java Batch Technical Overview

25 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Integration with WebSphere Developer Tools (WDT)

JSR 352
Development

Tooling

JSR 352 Application

Embedded
Liberty with
Java Batch

Workstation Eclipse Platform

https://developer.ibm.com/wasdev/docs/creating-simple-java-batch-application-using-websphere-developer-tools/

Eclipse-based JSR 352 tooling

Understands the JSR 352 requirements,
helps you build the implementation
classes, and creates the JSL

Embedded Liberty allows you to deploy
and run your application all within your
Eclipse framework

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102639TechDoc:

wasDev:

https://developer.ibm.com/wasdev/docs/creating-simple-java-batch-application-using-websphere-developer-tools/
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102639

IBM WebSphere Liberty Java Batch Technical Overview

26 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

JobRepository Implementation

The JSR 352 standard calls for a
JobRepository to hold job state
information, but it does not spell
out implementation details

IBM WebSphere Liberty Batch provides three options for this:
1. An in-memory JobRepository

For development and test environments where job state does not need to persist between server starts

2. File-based Derby JobRepository
For runtime environments where a degree of persistence is desired, but a full database product is not needed

3. Relational database product JobRepository
For production and near-production environments where a robust database product is called for

Table creation is automatic. Relatively easy to drop one set of
tables and re-configure to use a different data store.

IBM WebSphere Liberty Java Batch Technical Overview

27 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

REST Interface to JobOperator

The JSR 352 standard calls for a
JobOperator interface, but leaves to
vendors to implement function to
handle external requests for job
submission, control and monitoring

The IBM WebSphere Liberty Batch REST interface provides:
1. A RESTful interface for job submission, control and monitoring

Job submission requests may come from outside the Liberty Profile runtime

2. Security model for authentication and authorization
Authorization is role-based: administrator, submitter, monitor

3. JSON payload carries the specifics of the job to be submitted
With information such as the application name, the JSL file name, and any parameters to pass in

REST

This permits the remote submission and control of jobs; it provides
a way to integrate with external systems such as schedulers

IBM WebSphere Liberty Java Batch Technical Overview

28 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Command Line Client to REST Interface

RESTbatchManager

> command

REST/JSON

Person Script

The batchManager command line interface client provides:
1. A way to submit, monitor and control jobs remotely using a command line interface

On the same system, or a different system … different OS … doesn’t matter: TCP/IP and REST/JSON

2. Uses the REST interface on the IBM Java Batch server
Which means the same security model is in effect: SSL, authentication, role-based access

3. External schedulers can use this to submit and monitor job completion
batchManager parameters allow the script to “wait” for Java to complete. Parameters allow for discovery of
job log information, and a mechanism to retrieve the job log for archival if desired.

IBM WebSphere Liberty Java Batch Technical Overview

29 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

z/OS: Native Program Command Line Interface

> command

Person Script

WOLAbatchManagerZos

Same LPAR, cross-memory

Same batchManager command line function, but …
1. Not a Java client, so do not need to spin up a JVM for each invocation

Saves the CPU associated with initiating the JVM, and when there’s a lot of jobs this can be significant

2. Cross-memory
Very low latency, and since no network then no SSL and management of certificates

3. Same access security model
Once the WOLA connection is established, the same “admin,” “submitter” and “monitor” roles apply

IBM WebSphere Liberty Java Batch Technical Overview

30 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

AdminCenter Java Batch Tool 16.0.0.4

Graphical interface to list jobs and
their status, and view job logs

Tool appears in the Toolbox
of the AdminCenter

The Job Repository is
queried and a list of

jobs is provided,
including their status.

You can display the job
log from the tool as well.

IBM WebSphere Liberty Java Batch Technical Overview

31 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

AdminCenter Java Batch Tool 17.0.0.1

Update to include Job 'STOP' and
Job 'RESTART'

Tool appears in the Toolbox
of the AdminCenter

The "Actions" button now
allows you to act upon a job --
either Stop a running job, or

Restart a job that is in a
restartable state

IBM WebSphere Liberty Java Batch Technical Overview

32 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Inline JSL
Provides a way to maintain Job Specification Language (JSL) file outside the batch job
application package file

Liberty Server

Batch Job

IBM JSR 352

Application EAR:

File System

JSL Files

batchManager
batchManagerZos

(Command Line)

Other
Enterprise
Schedulers

IBM Workload
Scheduler

Manual
Submission

Provides flexibility in where you maintain JSL files:
1. Package JSL in application EAR or maintain outside EAR and point to at submission

2. Can use from command line utilities with --jobXMLFile= parameter

3. IBM Workload Scheduler can be configured to pass in the JSL file to use

--jobXMLFile=/path/file

JSL

8.5.5.7

Liberty
Batch
Plugin

IBM WebSphere Liberty Java Batch Technical Overview

33 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Integration with Enterprise Schedulers

REST

batchManagerZos
(Command Line)

The batchManager and batchManagerZos utilities provide this
1. batchManager is a command line interface that integrates with REST interface

This can be used on z/OS or on other platforms, same LPAR or across-LPARs

2. batchManagerZos is same command line interface but uses cross-memory WOLA
Used on the same LPAR as the batch server, it is very fast because of cross-memory WOLA

Enterprise
Schedulers

batchManager
(Command Line)

Submit jobs, check status of jobs, retrieve job logs

WOLA

IBM WebSphere Liberty Java Batch Technical Overview

34 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

IBM Workload Scheduler Integration

REST

IWS can integrate directly with the REST interface of IBM JSR 352
1. Eliminates the need for the command line interface utilities

Simplicity of design ... Command line interfaces may be used by other enterprise schedulers

2. Can be used by IBM Liberty Batch on z/OS or on distributed operating systems

3. Supports IBM’s inline JSL file function

4. A recorded demonstration can be seen here: http://youtu.be/VF5TyZN-MP0

IBM
Workload
Scheduler

Liberty
Batch
Plugin

IBM WebSphere Liberty Java Batch Technical Overview

35 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Batch Events

Liberty Server

Job/Step

IBM JSR 352

<batchJmsEvents>

JMS configuration elements
MQ or WebSphere default messaging

</batchJmsEvents>

Emit messages to a JMS topic space at key events during the batch job lifecycle:

server.xml

Topic Space

This is not the complete topic list. A few other
topic leafs exist. See the Knowledge Center and
search for string twlp_batch_monitoring

Monitoring
Process

A monitoring process can subscribe
to a general topic of interest
(completed jobs), or something more
specific (job step checkpoints taken).

Can wildcard the subscription (for
example, batch/jobs/*) and get
everything under that.

Subscription

Provides real-time insight into
the state of the batch jobs

8.5.5.7

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102603Techdoc

Batch

/jobs

/instance

/submitted

/dispatched

/completed

/stopped

/failed

/execution

/jobLogPart

/starting

/started

/stopped

/failed

/step

/started

/checkpoint

/completed

16.0.0.3

IBM WebSphere Liberty Java Batch Technical Overview

36 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Separation of duties …
1. Server designated as dispatchers handle job requests, and places them on JMS queue

The endpoints listen on the JMS queues and pick up the job submission request based on criteria you set to
indicate which jobs to pick up (more on that next chart)

2. Endpoint servers run the batch jobs
Deploy the batch jobs where most appropriate; co-locate some batch jobs and others have their own server

3. JMS queues (either Service Integration Bus or MQ) serve as integration between two
This provides a mechanism for queuing up jobs prior to execution

Liberty Profile

IBM Extensions

JSR 352

Dispatcher

Liberty Profile

IBM Extensions

JSR 352

Executors

Liberty Profile

IBM Extensions

JSR 352

Multi-JVM Support: Job Dispatchers, End-Points

REST

WOLA

batchManager
batchManagerZos

SIBus or MQ

Submit
<props>

Submit
<props>

Queue

IBM WebSphere Liberty Java Batch Technical Overview

37 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Multi-JVM Support: Get Jobs Based on Endpoint Criteria

Liberty Profile

IBM Extensions

JSR 352

IBM Extensions

JSR 352

Dispatcher SIBus or MQ

Submit
<props>

Submit
<props>

Queue

Executor

A property in the
server.xml defines the
“message selector” criteria
to use to pick up messages.

You can designate – by
server – what criteria to use.

server.xml

… messageSelector="com_ibm_ws_batch_applicationName = 'BatchJobA'" 1

… messageSelector="com_ibm_ws_batch_applicationName = 'BatchJobA'

OR com_ibm_ws_batch_applicationName = 'BatchJobB'"
2

… messageSelector="com_ibm_ws_batch_applicationName = 'BatchJobA'

AND com_ibm_ws_batch_myProperty = 'myValue'"
3

Submit jobs and have them run only
when intended server starts and
picks up the submission request

Have jobs run in intended
servers based on selection

criteria of your choice

Not limited to system, not
limited to platform … may

span systems and platforms

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102600Techdoc

IBM WebSphere Liberty Java Batch Technical Overview

38 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Multi-JVM Support: Partitions 8.5.5.8

Liberty Profile

IBM Extensions

JSR 352

IBM Extensions

JSR 352

Dispatcher

SIBus or MQ

Submit
<props>

Submit
<props>

Queue

Job Executor(s)

IBM Extensions

JSR 352

Partition
Executor(s)

IBM Extensions

JSR 352

messageSelector="com_ibm_ws_batch_applicationName =

'BatchJobA' AND com_ibm_ws_batch_work_type = Job' "

messageSelector="com_ibm_ws_batch_applicationName =

'BatchJobA' AND com_ibm_ws_batch_work_type = 'Partition' "

Job Executor Message Selector

Partition Executor Message Selector

This is an extension of the earlier “Step Partition” feature, but here across separate JVMs

IBM WebSphere Liberty Java Batch Technical Overview

39 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

CICS Liberty – JSR-352

CICS usage
1. Liberty JVM server can function as job Dispatcher, Executor or messaging engine
2. JMS with IBM MQ client mode connectivity required for MQ support with messaging

engine
3. JCICS and JDBC APIs can be used in the Executors (chunk step or batchlet step) to

access VSAM or DB2 from Java, or link to COBOL programs.
4. Liberty batch container coordinates recovery of CICS UOW and Java transaction

4a CICS UOW coordinates updates to VSAM, TS, TD, and DB2 type 2
4b. Java Transaction (JTA) coordinates updates to JMS/MQ client mode, and DB2 T4

CICS region

Liberty JVM

JSR 352

Dispatcher

CICS region

Liberty JVM

JSR 352

Executors

CICS region

Liberty JVM

JSR 352

REST

WOLA

batchManager
batchManagerZos

Submit
<props>

Submit
<props>

Messaging
Engine

DB2

VSAM

DB2

Job repository

Data

IBM WebSphere Liberty Java Batch Technical Overview

40 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Job Logging
Liberty Profile

IBM Extensions

JSR 352

A B

/<server_directory>/logs

/joblogs

/<application_name_A>

/<date>

/instance.#

/execution.#

part.#.log

/<application_name_B>

<date>

etc.

Job logs separate from the server log, separate from each other
1. Each job’s logs are kept separate by application name, date, instance and execution

2. The IBM JSR 352 REST interface has a method for discovery and retrieval of job logs
This is accessible through the batchManager command line interface as well. This is how job log retrieval
and archival can be achieved if needed.

3. Also publish the logs to the jobLogPart topic (as noted earlier) as each log part
closes or on a timer basis 16.0.0.4

IBM WebSphere Liberty Java Batch Technical Overview

41 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

SMF 120.12 Records for Java Batch 16.0.0.3

Liberty Profile

IBM Extensions

JSR 352

Job Step

Job Step

Job Step

Job

SMF

SMF

SMF

SMF

Records written at end of each step and at end of job

SMF 120.12 record sections:
Standard Header 1 / record
Subsystem Section 1 / record
Identification Section 1 / record
Completion Section 1 / record
Processor Section 1 / record
Accounting Section 0 - n / record
USS Section 1 / record

Record Type - step end / job end

Server identification - which Liberty ran the job

Job identification - job, step, execution id, app name, etc.

Timestamps - job submit, start, end; each step start / end

JES Job Identifiers - batchManagerZos JES jobname/ID

Exit Status - job or step completion code

CPU times - total CPU by job / step; GP and zIIP

Accounting - useful for accounting / chargeback

Noteworthy fields in the SMF 120.12 record:

Techdoc http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102668

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102668

IBM WebSphere Liberty Java Batch Technical Overview

42 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Liberty Profile server.xml
:

<featureManager>

<feature>servlet-3.1</feature>

<feature>batch-1.0</feature>

<feature>batchManagement-1.0</feature>

</featureManager>

:

<batchPersistence jobStoreRef="BatchDatabaseStore" />

<databaseStore id="BatchDatabaseStore"

dataSourceRef="batchDB" schema="JBATCH" tablePrefix="" />

:

Relatively simple updates to server.xml …
1. The batch-1.0 feature enables the JSR 352 core functionality

2. The batchManagement-1.0 feature enables the REST interface, job logging, and
the ability to configure the multi-JVM support.

3. The <batchPersistence> element provides information about where the
JobRepository is located

Some details left out of this chart, of course … but the key point is
that configuring the support is based on updates to server.xml

IBM WebSphere Liberty Java Batch Technical Overview

43 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

IBM Extensions

Overall Summary

JSR 352
Standard

Liberty Profile

Modernization

Java

JSR 352

Early Days of
Batch Processing

Over time …

Windows, AIX, Linux, Linux
for z Systems, z/OS …

REST interface

Command line client

Job logging

Multiple JobRepository

z/OS: native client

Multi-JVM capability

IBM
WebSphere
Liberty Java

Batch

IBM WebSphere Liberty Java Batch Technical Overview

44 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Other Documentation

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102544
The Techdoc for this presentation

• Overview presentation
• Video (in case your access to YouTube is blocked)

• Quick Start Guide
• Detailed step-by-step implementation guide

8.5.5 Knowledge Center
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_container_batch.html

YouTube Video
https://youtu.be/tRhKTMb-5Io

Github Repository (for examples and other links)

https://github.com/WASdev/sample.batch.bonuspayout/wiki/WebSphereLibertyBatchLinks

Other Techdocs related to Java Batch:
Job Classification: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102600
Batch Events: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102603
Batch Topologies: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102626
REST Interface: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102632
Using DFSORT and IDCAMS: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102636
Batch Migration: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102638
Lab Materials: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102639
Data Set Contention: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102667
Batch SMF: http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102668

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102544
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_container_batch.html
https://youtu.be/tRhKTMb-5Io
https://github.com/WASdev/sample.batch.bonuspayout/wiki/WebSphereLibertyBatchLinks
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102600
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102603
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102626
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102632
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102636
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102638
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102639
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102667
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102668

IBM WebSphere Liberty Java Batch Technical Overview

45 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Charts providing additional detail

IBM WebSphere Liberty Java Batch Technical Overview

46 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Listeners

IBM WebSphere Liberty Java Batch Technical Overview

47 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Job and Step Listeners

Job

Step

Step

JobListener {

public void beforeJob() throws Exception;

[your "before job" listener code]
}

JobListener {

public void afterJob() throws Exception;

[your "after job" listener code]
}

StepListener {

public void beforeStep() throws Exception;

[your "before step" listener code]
}

StepListener {

public void afterStep() throws Exception;

[your "after step" listener code]
}

IBM WebSphere Liberty Java Batch Technical Overview

48 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Chunk Listener

Begin Chunk

End Chunk

Commit

Chunk
Iteration

Rollback

Error!

ChunkListener{

public void beforeChunk() throws Exception;

[your "before chunk" listener code]
}

ChunkListener{

public void afterChunk() throws Exception;

[your "after chunk" listener code]
}

ChunkListener{

public void onError(Exception ex) throws Exception;

[your "on error" listener code]
} Parameter "ex" specifies the

exception that occurred

IBM WebSphere Liberty Java Batch Technical Overview

49 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

ItemRead Listener

ItemReader

ItemProcessor

ItemWriter

Chunk Step ItemReadListener {

public void beforeRead() throws Exception;

[your "before read" listener code]
}

ItemReadListener {

public void onReadError(Exception ex) throws Exception;

[your "on error" listener code]
}

ItemReadListener {

public void afterRead(Object item) throws Exception;

[your "after read" listener code]
}

Error!

Parameter "item" specifies
the object read by the reader

Parameter "ex" specifies the
read exception that occurred

IBM WebSphere Liberty Java Batch Technical Overview

50 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

ItemProcess Listener

ItemReader

ItemProcessor

ItemWriter

Chunk Step
ItemProcessListener {

public void beforeProcess(Object item) throws Exception;

[your "before process" listener code]
}

ItemProcessListener {

public void onProcessError(Object item, Exception ex)

throws Exception;

[your "on error" listener code]
}

ItemProcessListener {

public void afterProcess(Object item, Object result)

throws Exception;

[your "after process" listener code]
}

Error!

Parameter "item" specifies the
item about to be processed.

Parameter "item" specifies the item
being processed. Parameter "ex"

specifies the exception that occurred.

Parameter "item" specifies the
item processed. Parameter
"result" specifies item to be
passed to the item writer.

IBM WebSphere Liberty Java Batch Technical Overview

51 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

ItemWrite Listener

ItemReader

ItemProcessor

ItemWriter

Chunk Step
ItemWriteListener {

public void beforeWrite(List<Object> items)

throws Exception;

[your "before write" listener code]
}

ItemWriteListener {

public void onWriteError(List<Object> items, Exception ex)

throws Exception;

[your "on error" listener code]
}

ItemWriteListener {

public void afterWrite(List<Object> items)

throws Exception;

[your "after write" listener code]
}

Error!

Parameter "items" specifies the
list of items to be written.

Parameter "items" specifies the list of
item to be written. Parameter "ex"

specifies the exception that occurred.

Parameter "items" specifies the
list of items to be written.

D

IBM WebSphere Liberty Java Batch Technical Overview

52 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Overview of Skip Exception Processing

<skippable-exception-classes>

<include class="java.lang.Exception"/>

<exclude class="java.io.FileNotFoundException"/>

</skippable-exception-classes>

ItemWriter

ItemProcessor

ItemReader

No

Chunk?

Chunk
Iteration

Loop

Yes

Loop back to ItemReader
for next chunk, or end.

Start Exceptions may occur in all three batch artifacts:
read, process, or write.

In the absence of any "skippable exception"
definition, an unhandled exception thrown results
in the termination of the step.

You can define what types of unhandled exceptions
can be "skipped"; that is, ignored and processing
continues. You may define what is skipped for the
chunk step in the JSL. Example:

This would skip all exceptions except java.io.FileNotFoundException
(along with any subclasses of java.io.FileNotFoundException).

Good practice: skip based on your own class names, never general
Java exception classes.

The number of skips for a step may be limited by
the <skip-limit> JSL element. Default is no limit.

IBM WebSphere Liberty Java Batch Technical Overview

53 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

What Happens With a Skipped Exception?

ItemWriter

ItemProcessor

ItemReader

No

Chunk?

Chunk
Iteration

Loop

Yes

Loop back to ItemReader
for next chunk, or end.

Start

Skipped read -- the container calls ItemReader again
and the next item is read.
If you implement a SkipRead listener, you can capture information
about the skipped record for processing later.

Skipped process -- the container loops and calls
ItemReader again. The next item is read and
processed.
If you implement a SkipProcess listener, you can capture information
about the item that wasn't processed.

Skipped write -- the container commits the transaction
with whatever was (or was not) written. The
container starts a new chunk and calls the ItemReader.
If you implement a SkipWrite listener, you can capture information
about the list of items passed to the writer.

IBM WebSphere Liberty Java Batch Technical Overview

54 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Read, Process, and Write Skip Listeners

SkipReadListener {

public void onSkipReadItem(Exception ex)

throws Exception;

[your "skip read" listener code]
}

Parameter "ex" specifies
the read exception thrown

by the ItemReader

SkipProcessListener {

public void onSkipProcessItem(Object item, Exception ex)

throws Exception;

[your "skip process" listener code]
}

Parameter "item" specifies the item
passed to the ItemProcessor.

Parameter "ex" specifies the exception
thrown by the ItemProcessor.

ItemReader

ItemProcessor

ItemWriter

Chunk Step

Skippable
Error!

Skippable
Error!

Skippable
Error!

SkipWriteListener {

public void onSkipWriteItem(List<Object> items, Exception ex)

throws Exception;

[your "skip write" listener code]
}

Parameter "items" specifies the list of
item passed to the item writer.

Parameter "ex" specifies the exception
thrown by the ItemWriter.

Important! Skip listeners only called if the exception is defined in JSL as "skippable."

IBM WebSphere Liberty Java Batch Technical Overview

55 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Overview of Retry Exception Processing

Exception Thrown
In Reader, Processor, or Writer

Retry Defined in JSL? Skip Defined in JSL? FAIL step

Skip Limit Reached? FAIL stepRetry Limit Reached?

FAIL step
No-Rollback

Defined in JSL?

Do not
rollback; retry.

Rollback and start chunk
again with checkpoint

item-count=1

Perform Skip

NoYes

Yes

No No

Yes

Yes

NoYes No

If retry successful, then the step
continues on. If retry throws
exception, you repeat until
specified retry limit is reached

IBM WebSphere Liberty Java Batch Technical Overview

56 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Read, Process, and Write Retry Listeners
Important! Retry listeners only called if the exception is defined in JSL as "retryable."

RetryReadListener {

public void onRetryReadException(Exception ex)

throws Exception;

[your "retry read" listener code]
}

Parameter "ex" specifies
the read exception thrown

by the ItemReader

RetryProcessListener {

public void onRetryProcessException(Object item, Exception ex)

throws Exception;

[your "retry process" listener code]
}

Parameter "item" specifies the item
passed to the ItemProcessor.

Parameter "ex" specifies the exception
thrown by the ItemProcessor.

ItemReader

ItemProcessor

ItemWriter

Chunk Step

Retryable
Error!

Retryable
Error!

Retryable
Error!

RetryWriteListener {
public void onRetryWriteException(List<Object> items, Exception ex)

throws Exception;

[your "retry write" listener code]
}

Parameter "items" specifies the list of
item passed to the item writer.

Parameter "ex" specifies the exception
thrown by the ItemWriter.

IBM WebSphere Liberty Java Batch Technical Overview

57 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Partitioning

IBM WebSphere Liberty Java Batch Technical Overview

58 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Example: Partitions to Operate on Data by State Name

Step

Step

Step

Job

Partition Executor

"Operate only on
data matching:

State = Vermont"

Partition Executor

"Operate only on
data matching:

State = New York"

Partition Executor

"Operate only on
data matching:
State = Ohio"

Two ways to accomplish this:

1. Static values in JSL

2. Using a partition mapper

We're showing three partitions,
but you could have any number
of partitions based on your data
processing needs

IBM WebSphere Liberty Java Batch Technical Overview

59 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Partitions: "Fixed"* Definition in the JSL

<step id="Step1">

<chunk item-count="10000">

<reader ref="com.ibm.ws390.batch.Reader">

</reader>

<processor ref="com.ibm.ws390.batch.Processor">

<properties >

<property name="State" value="#{partitionPlan['State']}"/>

</properties>

</processor>

<writer ref="com.ibm.ws390.batch.Writer">

</writer>

</chunk>

<partition>

<plan partitions="3">

<properties partition="0" />

<property name="State" value="New York" />

</properties>

<properties partition="1" />

<property name="State" value="Vermont" />

</properties>

<properties partition="2" />

<property name="State" value="Ohio" />

</properties>

</plan>

</partition>

:

* It is possible to pass the values in as job properties and use JSL substitution.

JSL

The number of partitions is
set to a fixed value of 3.

The first partition is given
a property of "New York."
It works on records related

to New York only.

The other two partitions are given
properties of "Vermont" and "Ohio." They

work on their respective data records.

The property is defined to the
processor, and is indicated to
come from a Partition Plan,

which in this JSL is a fixed <plan>

IBM WebSphere Liberty Java Batch Technical Overview

60 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

<step id="Step1">

<chunk item-count="10000">

<reader ref="com.ibm.ws390.batch.Reader">

</reader>

<processor ref="com.ibm.ws390.batch.Processor">

<properties >

<property name="State" value="#{partitionPlan['State']}"/>

</properties>

</processor>

<writer ref="com.ibm.ws390.batch.Writer">

</writer>

</chunk>

<partition>

<mapper ref="com.ibm.ws390.batch.StateNameBasedPartitionMapper">

<properties >

<property name="States" value="#{jobParameters['States']}"/>

</properties>

</mapper>

</partition>

JSL

Partitions: Using the Partition Mapper

"New York" , "Vermont" , "Ohio"

Partitions = 3
Array of String Values

You write this class to provide the parameter
string you need for your partitions.

The property is defined to
the processor, and down in

the <partition> section a
<mapper> is defined.

IBM WebSphere Liberty Java Batch Technical Overview

61 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Partition Mapper Specifics

package javax.batch.api.partition;

import javax.batch.api.partition.PartitionPlan;

public interface PartitionMapper {

/**

* The mapPartitions method that receives control at the

* start of partitioned step processing. The method

* returns a PartitionPlan, which specifies the batch properties

* for each partition.

* @return partition plan for a partitioned step.

* @throws Exception is thrown if an error occurs.

*/

public PartitionPlan mapPartitions() throws Exception;

}

<partition>

<mapper ref="<your_mapper_class>"/>

</partition>

JSL

Returns the PartitionPlan. A sample
implementation of the PartitionPlan is provided
as PartitionPlanImpl in the JSR-352 specification.

IBM WebSphere Liberty Java Batch Technical Overview

62 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Overview: Partition Collector and Analyzer

Collector

Your code

Analyzer

Your code

Collector

Your code Collector

Your code

Partition
Thread

Partition
Thread

Partition
Thread

Parent
Thread

Serializable
Objects

These are optional interfaces you may implement if you wish to
collect information from each partition during execution.

The collector runs in each partition and passes data over to the
analyzer, which runs in the parent thread.

For chunk step, called after every chunk
checkpoint, then again at the end; for batchlet,

called once at the end of the batchlet

IBM WebSphere Liberty Java Batch Technical Overview

63 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Overview: Chunk Step with Partitions

Reducer: beginPartition

Mapper: mapPartitions

Analyze Collector Data

Partition End: AnalyzeStatus

Reducer
rollbackPartitionStep

Reducer
Before Step Complete

After all partitions end:
Rollback Indicated No Rollback ItemWriter

ItemProcessor

ItemReader

No

Chunk?

Chunk
Iteration

Loop

Yes

Start

Before any
partition runs

Send Collector Data

Loop back and call ItemReader,
or end if no more records.

Runs continuously while
partitions are active

Each partition:

Reducer
After Step Complete

IBM WebSphere Liberty Java Batch Technical Overview

64 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Batch Contexts - Job Context

getJobName()

getInstanceId()

getExecutionId()

getProperties()

getBatchStatus()

setTransientUserData(Object data)

getTransientUserData()

setExitStatus(String status)

getExitStatus()

This data is not persisted to the
job repository; it does not exist
past the life of the job.

This information stays local to
the JVM in which it is set.

This is useful for passing
information between steps in a
job.

IBM WebSphere Liberty Java Batch Technical Overview

65 © 2018, IBM Corporation

WP102544 at ibm.com/support/techdocs

Batch Contexts - Step Context

getStepName()

getStepExecutionId()

getProperties()

getBatchStatus()

getException()

getMetrics()

setTransientUserData(Object data)

getTransientUserData()

setPersistentUserData(Serializable data)

getPersistentUserData()

setExitStatus(String status)

getExitStatus()

The "step transient" data is different
from the "job transient" data.

The "step persistent" data is stored in
the job repository at each checkpoint,
or at the end of a batchlet step.

For partitions each
partition gets its own
unique step context, so
you can not communicate
across partitions this way.

The step context can be a good way to
communicate among the components of a
step, such as between the reader and the
reader listener or a skip listener.

