
IBM WebSphere Liberty Profile for z/OS

Java Batch with JSR 352Java Batch with JSR 352
See the WP102544 Techdoc at ibm.com/support/techdocs for more

Batch Processing
In the early days of electronic computers, batch processing was the
type of work that was most often performed. The mainframe
computer would work through bulk data and perform whatever
processing the program was designed to do.

Batch processing is still an important part of modern information
technology. That is because some work is best suited to being
performed in bulk. Batch processing was there in the early days;
it's still here today; and it will still be here tomorrow.

What has changed is the approach to batch processing.
Programming languages such as COBOL are still used, but
increasingly Java is part of the discussion for batch processing as
well.

Business Value of Java Batch
Some reasons cited for considering Java for batch include:

 Modernization – an effort to analyze and improve business process for
the purpose of increasing productivity and decreasing cost. Batch
processing with Java is often part of this analysis.

 Skills – Java skills are more readily available than are COBOL skills.
The cost of developing and maintaining programs is a function of the
availability of the programming skills required.

 Mainframe offload – on IBM z/OS Java workload is eligible for
offload to specialty engines1, which provides a financial benefit to
running Java.

For these reasons and perhaps others, many are looking to Java as a
programming language for batch processing.

Java Batch Before Open Standards
Java has been available for almost 20 years. In that time many
approaches to processing batch with Java have emerged:

 JVM launchers – a Java Virtual Machine (JVM) is launched with a
shell script or a mainframe tool such as BPXBATCH or JZOS and the
Java program runs. All batch process handling is the responsibility of
the batch program.

 Vendor frameworks and runtimes – these provide programming and
functional services for batch programs to use. This allows batch
programmers to focus on business logic while taking advantage of
vendor-provided function.

Both approaches are in use today, and each serves a role for which
it is particularly suited. However, as Java batch became more
prevalent, the demand for an open standard emerged. That resulted
in the open standard for Java batch, which is known as JSR 352.

Open Standard Java Batch – JSR 352
In 2011 a group was formed to study and design an open standard
for Java batch processing. Representatives from many companies,
including IBM2, developed a draft standard. The initial release of
the standard was released in 2013. The standard, known as JSR
352, is now included as part of the Java EE 7 open standard3.

1 For example, the zAAP or zIIP processor.
2 Led by IBM.
3 IBM wrote the reference implementation for JSR 352 included with Java EE 7.

Going Beyond the Specification
The JSR 352 standard is, in many ways, a programming interface
standard. It makes reference to operational components, such as a
data store for holding job information, but it does not mandate how
those components are to be implemented. Vendors such as IBM are
free to provide operational and runtime enhancements to the
standard as long as the specifications of the standard are met.

IBM's JSR 352 implementation meets the JSR 352 specification
requirements and provides operational enhancements IBM saw as
important for JSR 352 to be ready for enterprise Java batch
processing.

IBM's JSR 352 Implementation
IBM's initial implementation of JSR 352 was made available in
June 2015 as part of Liberty Profile Version 8.5.5, Fixpack 64.

The IBM implementation of JSR 352 includes compliance to the
specification requirements, as well as the funtional enhancements
illustrated by the following diagram and described below:

Rest Interface
The JSR 352 specification calls for a “JobOperator,” which is an
interface to submit and manage batch jobs. The specification
simply provides details on the methods of the interface, but not
how it is to be implemented.
The IBM JSR 352 implementation running in a Liberty Profile
server includes a RESTful interface to the JobOperator. This
allows jobs to be submitted and managed by a client external to
the server itself, as well as providing additional functions such as
retrieving job logs or purging jobs. The REST interface also
provides the ability to integrate the IBM JSR 352 runtime with
external schedulers, as we describe below.

Job Logging
The IBM JSR 352 implementation provides a way to separate the
Java batch job log from the server output. It also provides a
mechanism to separate each job log from others, and organize by
date and job execution. This makes easier the task of finding and
archiving batch job logs.

4 Often notated as simply 8.5.5.6. This applies to all operating system platforms
supported by IBM Websphere Liberty Profile.

© 2015, IBM Corporation
WP102544 at ibm.com/support/techdocs

Version Date: July 8, 2015

External Scheduler Support
Enterprise scheduler functions, such as IBM Tivoli Workload
Scheduler, or CA-7 or Control-M5 are often used to coordinate
and control batch job submissions. Incorporating Java batch
submission as part of enterprise batch submission is critical.
The JSR 352 specification does not speak to enterprise scheduler
integration beyond the specification of the JobOperator. IBM's
extension of the JSR 352 specification includes a mechanism to
integrate with enterprise schedulers. It comes in two forms:

batchManager Command Line Utility

The batchManager command line utility is a Java-based tool that
uses the REST interface provided by the IBM JSR 352 runtime.
Enterprise schedulers may invoke the batchManager command
line utility using shell script or .bat file. A “wait” parameter will
keep batchManager active until the Java batch job ends.
batchManager may be used to submit jobs on the same server
platform or a remote server platform.

batchManagerZos Command Line Utility

On z/OS another command line utility is provided called
batchManagerZos. This uses a cross-memory6 call into the
Liberty Profile server to submit and monitor jobs:

This also has a “wait” function so the submitted job that runs
batchManagerZos remains active while the Java batch job runs
in the Liberty Profile JSR 352 container.

batchManagerZos is a native program and requires no Java to
operate. That means there is no JVM instantiation overhead
associated with using batchManagerZos to integrate z/OS
enterprise schedulers with IBM JSR 352 in Liberty Profile z/OS.

Multi-JVM Support
The objective of this feature is to separate job submission from
job execution. That provides additional flexibility to manage the
Java batch workload in your environment.
This feature uses JMS queuing (either MQ or the service
integration messaging engine of Liberty Profile) between the job
dispatcher and the job executors:

5 CA-7 and Control-M are trademarks CA Technologies and BMC Software
respectively.

6 It uses the WebSphere Optimized Local Adapters (WOLA) function.

The executor servers look for job submissions messages that
match what they are configured to execute. Considerable
flexiblity exists for what attributes an executor server uses when
picking up and running a job.

The benefits of this design include:

 Java batch job execution may occur on a Liberty Profile server
separate from that used for job submission. The Liberty Profile
server may be on the same operating system platform or a different
platform.

 You can tailor where jobs run based on criteria of your choosing,
such as Job A running on a Windows platform, and Job B running on
z/OS.

 Jobs submission can take place even though the executor server is
not running. This allows you to submit jobs during the day and later,
during a batch window, start the executor servers. They will read the
job submission messages and run the Java batch jobs.

Getting Started with IBM JSR 352
This may be as simple as creating a Liberty Profile server, making a
few configuration changes, and using the supplied samples to see a
JSR 352 Java batch job run. From there you may explore more of
the features supplied by IBM JSR 352.
See the WP102544 Techdoc at ibm.com/support/techdocs
for step-by-step guides on implementing and using IBM JSR 352
with Liberty Profile.

Summary
Batch processing has evolved over time to include different
languages, including Java. The development of the JSR 352 open
standard for Java batch means application developers may write
batch jobs to the open standard specification. Vendors such as IBM
implement the JSR 352 standard and provide additional function
based on what they see as important to the companies and industries
they serve. IBM's JSR 352 in Liberty Profile 8.5.5.6 and higher
provides compliance with JSR 352 as well as the additional value
features discussed.

More Details
See WP102544 at ibm.com/suppor/techdocs for more on
the IBM JSR 352 implementation in Liberty Profile.

To discuss IBM JSR 352 or other WebSphere Application Server
topics, contact Dave Sudlik, Product Manager - WebSphere
Application Foundation, at dsudlik@us.ibm.com

End of Document

© 2015, IBM Corporation WP102544 at ibm.com/support/techdocs
Version Date: July 8, 2015

mailto:dsudlik@us.ibm.com

