
ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-1

© 2007 IBM Corporation

The Enterprise Service Bus

WebSphere ESB

WebSphere Message Broker

WebSphere Service Registry and Repository

Don Bagwell

IBM Washington Systems Center
dbagwell@us.ibm.com

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-2

© 2007 IBM Corporation2 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

This slide intentionally left blank

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-3

© 2007 IBM Corporation3 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

The Value of Loosely-Coupled Services

But this by itself does not solve the complexity issue …

It allows the flexible re-use of assets. Construct business processes by using

these services in the order needed:

Service

Consumer A

Service

Consumer B

Service
Consumer C

Implementation
hidden behind

standardized interface

Asset
Re-use

Philosophy of process
modularization

This is good -- it achieves at least a few key things:
• Establishment of a mindset towards reusable, service-oriented design
• The creation of an inventory of reusable service assets
• The hiding of complex implementation details behind a standardized interface

We’ve spent a good deal of time focusing on the role of Web Services. We’ve seen that creating a

library of reusable services can lead to greater flexibility. Having users of those services “loosely

coupled” (that is, integration with them not buried deep in the source code, or in some inflexible

properties file) can assist in this flexibility. By hiding the complexity of the implementation behind a

standarized interface, we can shield users from things they don’t need to worry about and expose

only those things really applicable to the service.

This is all good. It is a good step towards SOA. But by itself it is not SOA. Because it does not

itself solve the basic complexity issue.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-4

© 2007 IBM Corporation4 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Still Point-to-Point

What is it? And what does it provide? …

Services are only the first step. If only a few, then easy to manage. But when

the number increases, the complexity increases as well. We need to address
the point-to-point nature.

A

A

A

A

A

A

Service

Requesters

Service

Providers

A

A

A

A

A

A

Service

Requesters

Service

Providers

This picture is not
unlike the picture
we painted earlier.

S
e

rv
ic

e
s

 B
u

s

Our goal is to get to a
picture like this, where

the connections are
handled by a kind of
“any-to-any” system

Web Services, as we’ve described them, is still a “point-to-point” architecture. And without any

intermediary intelligence, the interconnections between requesters and providers can become

nearly as complex as the picture we painted to start this discussion. Things are a little better in

that the interconnections are not tightly-coupled. There’s some flexibility. But the picture can still

become challenging as the number of users and services increases.

Our goal is to get to sometihng like what we’re showing on the right. Ideally all users would

connect to “something” in the middle, and that “something” would connect requester to provider

using intelligence. The picture then gets a lot less complex.

We have that “something” labeled as a “Services Bus” in the picture. But what exactly is that?

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-5

© 2007 IBM Corporation5 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

The ESB -- What It Is and What it Provides

A common initial use of the ESB …

Here’s the picture from our Introduction presentation. Key point is that the

ESB is function mapped on top your existing network infrastructure.

Service
Consumer

Service
Consumer

Enterprise Service Bus

Function and capabilities provided to

users of corporate network

Implemented with middleware and

perhaps some hardware components

• Messaging services
Support different message types;

content-based routing; guarantee
message delivery.

• Management services
Monitor performance; enforce SLA

• Interface services
Support web services standards and
provider “adapters” for non-standard

interfaces

• Mediation services
Transform messages between
formats.

• Security services
Encryption, authentication,
authorization

Even with this it’s a bit of a slippery concept. Let’s take a look at one
more “concept picture” then introduce IBM’s ESB products.

An IP network built on Ethernet does not provide any of this.
This is function above and beyond basic networking

We have tried, throughout these presentations, to offer a physical view of things whenever

possible. Logical views have their place, but for some of us it’s helpful to see things in a more

practical light to really get a handle on what something is.

This picture is one attempt at showing a semi-physical representation of the Enterprise Service

Bus -- the ESB. The key point we’re trying to make is that the ESB is not a separate physical

network, but rather middleware function mapped on top your existing corporate network. Your

service consumers and service providers end up connecting through this new middleware function,

but they’ll do so across your existing corporate nework infrastructure.

The notion here is that an ESB -- in whatever form or flavor it’s delivered -- should provide a list of

basic “services” … or functions. A brief description of those services is offered on the chart. This

is not an industry standard list, but there does seem to be a consensus forming around the basics

offered here. We’ll see how some of those things are implemented in the IBM products we’ll look

at later.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-6

© 2007 IBM Corporation6 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Ability to “Alias” the Service -- Improved Flexibility

More complex examples …

Even if we don’t do fancy message transformation, simple routing through ESB

provides the benefit of improving flexibility:

Admittedly a simple example. And dynamic retrieval of an updated WSDL in a Web Services
world achieves the same result. But what about application connections that don’t use Web

Services? Or, what if client has cached copy of WSDL and it’s not updated?

Service
Consumers

ESB
ESB “Program” that
handles the request

Old

Location
New

Location

• Service users continue
to go to same ESB
location

• Definition inside ESB
modified to point to new
service location

• Change hidden from
service users

Even simple implementations of ESB can serve important role as intermediary that hides
service location details behind common entry point. Then it can be expanded as needed to do

additional protocols, protocol remapping, message transformation, etc.

The previous page showed an example of two flows: one very simple, one more complex. That

chart is useful, but it may leave someone with the impression that an ESB is only useful when

doing complex message mediation. To help correct that, consider the chart above. It shows an

ESB that’s doing only simply routing of messages. And in this picture we’re showing lots of

requesters going after the service.

Now what happens if you have to move the service to a new machine … perhaps at a new host

name, or IP address, or port? That may involve having to go out to all the service requesters and

modifying them to point to the new location. But if the request goes to the ESB first, then the

definition of the service endpoint can be updated in the ESB. The users are unaware of the

change … their definition of the service location stays the same -- the ESB. But the requests now

flow to the new location.

There are other ways to achieve this result, of course. The chart mentions dynamic refresh of

WSDL in a Web Services environment. Or a front-end IP proxy device could also do forwarding.

So when the example is too simple then the value of an ESB gets a bit obscured. What an ESB

provides is this simple “alias” benefit as well as the opportunity to expand later and do message

mediation (changing the message in some way); mapping the request to a different outbound

protocol; enhancing the request to actually call two backend services rather than just one, even

though the user is still issuing one request. The possibilities are quite large.

Let’s look at a slightly more complex example.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-7

© 2007 IBM Corporation7 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

The ESB as a “Black Box” for Service Consumers and Producers

The Golden Rule …

Here’s a conceptual diagram showing ESB handling two different request flows.

One is simple pass-through; other requires some format transformation.

Service

Consumer A

Service

Consumer B
WebSphere
z/OS

CICS

1

Extract Data
from XML

Call CICS
Transaction

Call DB2 and

update message

3

2

4

ESB

1. Consumer A has standard
SOAP/HTTP request

2. ESB provides simple addressing
and routing for A’s request

3. Consumer B has non-standard
XML over MQ or JMS

4. Data extracted from XML,
COMMAREA formatted

5. CICS tran called

6. DB2 called and message updated,
formatted into XML and delivered
back to client

5

Hint: the MQ Broker

lab will look similar
to this

Illustration shows ESB providing from the simple to the more
complex. Communication flows across existing network. Whole
thing is “transparent” to consumers or providers of services

HTTP MQ or JMS CICS EXCI

A

B

Service

Service

ESB

DB2

JDBC

6

The concept of an ESB has been described by some as a “patch panel” between requesters and

providers. Another way to look at this is for the ESB to be a “black box” connecting requester to

provider, with neither really knowing what’s going on inside the ESB. Here’s a picture that strives

to make the ESB a little less mysterious.

We’ll walk through this example based on the numbered blocks:

1.Let’s assume we have a service consumer (“A”) who’s method of access is SOAP over HTTP.

They seek to use a Web Service hosted in WebSphere for z/OS. Rather than code the

WebSphere host and port as the destination, the Web Service client points to the host and port

being listened on by the product implementing the ESB.

2.Consumer A’s request goes into the ESB. But for this request there’s no need for any

message transformation or protocol switching, so the ESB performs simple routing and sends

the request on its way to WebSphere. The response returns to consumer A.

3.Assume you have another service consumer (“B”) who uses a non-SOAP message overMQ or

JMS. They seek to access CICS. They too initially connect to the ESB via a queue monitored

by the product that implements the ESB.

4.A piece of logic in the ESB decomposes the XML and formats up the COMMAREA

5.It executes a CICS transaction over EXCI

6.It then queries DB2 over JDBC to retrieve a final bit of information, then recomposes the XML

and returns it to consumer B

Neither consumer has any idea what’s going on inside the ESB. To them the ESB is simply a

“black box” -- a place where each connects to for its services.

The presence of computation going on inside the ESB may appear odd. Does that mean we have

yet another place where our applications can run? Let’s look at the golden rule of ESBs …

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-8

© 2007 IBM Corporation8 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

No Business Logic in the ESB!

IBM Product Implementations …

The ESB has within it a computational environment. It would be possible to

code business logic there, but it is strongly recommended you do not:

Service

Consumers

Service
Providers

Routing, mediation, format
transformation

ESB
Keeping business

logic out of the
ESB is a discipline

Business
logic behind
the service
interfaces

Why? Because business logic in the ESB starts to break down the “service oriented”

approach. It’s a trend back in the direction of tightly integrated and inflexible.

The ESB is capable of hosting computational logic. In order for the middleware to do the kind of

processing expected of an ESB -- message transformation, routing based on content, protocol

switching -- it’s going to need to be able to run “programs”. Does that mean it’s possible to start

doing application business logic in the ESB? It is, but it is strongly recommended you do not.

The reason to avoid this is because it’s a trend in the direction back towards complex and inflexible

application architecture design. The idea is to have your business logic contained in the services

components and the composite applications that string together the services. There will be “logic”

in the ESB, but it should be limited to logic associated with ESB functionality -- routing and

transformation.

How can this be insured? By imposing discipline in the way you use and manage your SOA

environment. This gets to the question of “governance,” which we’ll cover later.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-9

© 2007 IBM Corporation9 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

IBM’s Implementation of ESB into Product

Product Positioning …

Ultimately we need to get to the point where we can point to something and

say “There, that’s IBM’s ESB on z/OS.” Here they are:

WebSphere Application Server for z/OS

WebSphere Enterprise
Service Bus (WESB)

WebSphere MQ for z/OS

WebSphere Message
Broker (WMB)

• Built on the proven J2EE platform of
WebSphere Application Server

• Focus is standards-based access and
J2EE connector support to backend
systems

• Built on the proven messaging
platform of MQ

• Standards-based access and non-
standard through a host of
connectivity options

They can

interoperate

Key Points:

• Much more to cover -- we’ll look at each product in more detail in a bit

• Shows how ESB is function implemented in middleware (makes “real” the concept of ESB)

• There is the question of “Which Should I Consider?” which we’ll cover next
It’s going to come down to function needed and degree of non-standards access. WMB is referred to as “Advanced ESB”
because of its capabilities -- standards-based and non-standard. WESB focuses on industry standard only.

Let’s get practical here and mention the two pieces of IBM middleware that implement the ESB --

WebSphere Enterprise Service Bus (WESB) and WebSphere Message Broker (WMB).

• WESB -- This is function that is added to WebSphere Application Server. It provides for

message routing and some message “mediation” (which means changes to the message).

The focus of this offering is on standards -- J2EE, SOAP, Web Services. It can take

advantage of WebSphere’s rich array of J2EE connector support to access data.

• WMB -- This is function built on the MQ messaging platform. This is something referred to as

“Advanced ESB” because it does standards-based message handing (SOAP) as well as non-

standard. In fact, the array of non-standard protocols and accessibility of WMB is quite

impressive, as you’ll see.

We dozens of charts that go into more detail on these two offerings. So this one chart is intended

to be just a brief introduction and nothing more. Still, it’s important to understand that there are

real products that implement the concepts of ESB we’ve been talking about. For IBM at this point

in time, these are the two ESB offerings.

The natural question comes up -- “Which should I consider?” The positioning of one vs. the other

is something best done when you have a handle on what each is capable of. Ultimately it comes

down to the capabilities you require, the skills you already have, and the degree of standards

compliance you require. The two can interoperate, so the decision really is not “either / or”, but

rather WESB, WMB or possibly both.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-10

© 2007 IBM Corporation10 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Approximate Product Positioning

WESB …

Rough picture of how WESB and WMB (and DataPower) relate to one another:

Throughput

Programming Flexibility

DataPower
devices*

WebSphere Message Broker

WebSphere Enterprise
Service Bus

Additional connectivity options above

and beyond industry standards

Non-Java (native)

programming

implementation

www.ibm.com/software/integration/datapower/

• Integration Appliance XI50 -- wirespeed message transformation
• XML Security Gateway XS40 -- WS-Security, XML encryption, XML validation
• XML Accelerator XA35 -- processing XML, XSD, XPath and XSLT at wirespeed

DataPower = rackmount hardware devices

Which you should use
involves understanding

your needs.

“It depends” applies here

Please do not read more
into this chart than it

intended!

It’s intended to be a way of
understanding the approximate

positioning of the products

What’s not represented here is the degree of industry standard adoption by WESB:
SCA, SDO, J2EE, JCA, etc. If that’s important in your decision model, then factor
that separately from what’s shown here.

This chart provides a kind of rough positioning of the two products we just mentioned --

WebSphere Enterprise Service Bus (WESB) and WebSphere Message Broker (WMB) -- with a

third product family introduced: the DataPower appliances.

Note: it is very important that you not take this chart to be some kind of formal, precise

representation of relative functionality, or relative performance. The chart is really intended to

merely provide a visual way of understanding the basic positioning. When evaluating which

product is right for you, the familiar phrase “It depends” applies. We don’t mean to overuse that

phrase, but the truth is it does depend … on what you’re trying to accomplish. Which is why we’re

presenting this material, so you can get a better understanding of which product does what and

therefore start the process of mapping the product capabilities to your needs.

The graph has two axis: throughput and flexibility. That’s what’s being compared here. I tried to

think of a way to represent the extent to which each implements industry standards. That’s

WESB’s strong suit -- industry standard implementations. WMB does some of that as well, but not

to the extent WESB does. So if that’s an important decision criteria for you, factor that in when

considering the different product choices.

We’ve not mentioned DataPower up to this point. DataPower appliances are rack-mount hardware

devices that do some of the same kinds of things you’ll see the WESB and WMB products doing.

DataPower is a company that IBM acquired a year or two ago. The key to understanding the

DataPower concept is to understand that much of their speed and power is due to function being

burned into processors specifically designed for the purpose. That provides speed. But at a cost

of flexibility. That’s why you see the DataPower box positioned to the upper left. We’ll not cover

DataPower any more in this presentation but the URL is presented at the bottom of the chart and

the three available devices are offered in bullet format here with a brief description of each.

DataPower devices can be used in combination with WESB or WMB or both.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-11

© 2007 IBM Corporation11 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

An introduction to

WebSphere Enterprise Service Bus

(WESB)

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-12

© 2007 IBM Corporation12 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Start With A Recap of WebSphere Application Server

Installing WESB …

We do this because WESB is built on top. WAS provides the communication

infrastructure and J2EE runtime environment. WESB extends that.

CR

Node Agent

CR SR

AppServer

CR

Daemon

CR SR

AppServer

CR

Node Agent

CR SR

AppServer

CR SR

AppServer

CR SR

AppServer

Cluster

CR

Daemon

MVS Image MVS Image

WESB Functionality

This provides the necessary core
infrastructure

• Physical runtime environment

• J2EE application framework

• Communication access

• Essential protocol support

• Web Services intrastructure

• Messaging infrastructure

• Backend data adapter support

• Management and administrative
framework

This builds on it by providing:

• Mediation framework

• SCA, SDO support (more in a bit)

To start the discussion of WESB, it’s important to begin by reminding ourselves that WebSphere

Application Server is the foundation, or base to WebSphere Enterprise Service Bus. What that

provides is the necessary core infrastructure, particularly the essential protocol support (HTTP,

HTTPS, JMS, RMI/IIOP) and all the backend data connectivity functionality.

What WESB provides is additional function on top of this infrastructure that provides the key

elements of the ESB -- a “mediation framework” and the Service Component Architecture (SCA)

and Service Data Object (SDO) support. What those things are will be explained over the next

several charts.

We mentioned before how WebSphere Application Server is increasingly being used as a

foundation for additional functional support … this is an example of that.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-13

© 2007 IBM Corporation13 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

CR

Node Agent

CR SR

AppServer

CR

Daemon

CR SR

AppServer

MVS Image

How WESB Is Installed

Message Handling Inside WESB …

It is a process of linking the WebSphere configuration HFS to the WESB HFS,

then “augmenting the profile” (changing it) to include the new function.
There’s also a step to create the database (Cloudscape or DB2)

PDSe Data Sets
hlq.SBBO*

Product HFS
hlq.SBBOHFS

Config HFS

Product HFS
hlq.SBPZHFS

WebSphere ESB
Delivered as a product HFS;
no PDSe data sets
FMID = HESB601
HESB602 for V6.0.2

WebSphere Appserver
Product HFS and Product PDSe
FMID = H28W601

V6.0.2.11 or higher

Symlinks

Key is this is an addition of function to an existing configuration. Function is
introduced with shell scripts that link WAS configuration HFS to the WESB HFS,

along with an update of the WAS profile.

All batch JCL and
shell scripts

WebSphere Enterprise Service Bus is a separate product from WebSphere Application Server.

The process for installing it involves two basic steps:

• Performing the SMP/E installation of the WESB product itself. This is going to create a product

HFS among other artifacts. (But no PDSe module libraries. WESB runs entirely within

WebSphere Application Server which has its own PDSe module libraries.)

• The “linking” of the WebSphere configuration to the WESB product HFS. This is done with a

series of shell scripts that creates symbolic links out of the configuration HFS into the WESB

product HFS and “augmenting” (updating) the WAS configurations with several new resources

and applications. It’s not hard … but it does involve carefully running a series of scripts.

• Finally, the creation of the backing database structure. WESB needs to store information

about elements of its configuration -- SIB information, deployed mediation modules, etc. -- and

it uses a relational datastore for that. Database creation scripts are provided for Cloudscape

(a file based relational store that has a JDBC interface; simple, used for initial construction and

testing purposes) and DB2 (more robust, used for production implementations).

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-14

© 2007 IBM Corporation14 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Message Handling Intelligence in the ESB

Mediation Framework …

To discuss WESB it quickly becomes necessary to talk about the programming

capabilities WESB supports. That will be our focus over next several charts.

Something called a
“Mediation Flow”

It’s a key part of the WESB story. Talking about it requires us to explore how
the mediation flow is built and what it can do. It’s a more abstract discussion.

• Developed in WID
• Involves “components” and

“modules”

• Involves “Service Component
Architecture” (SCA)

• Is a bit abstract

In discussing the WESB we could focus on just the installation and configuration tasks of the

product, but that would leave much of the story left untold. We ultimately need to discuss how the

intelligence inside the ESB is developed, and that requires we talk about the programming

elements of the product. For WESB, that involves talking about the “Mediation Framework” and

something called Service Component Architecture (SCA). It’s a somewhat complex and abstract

topic, but talking about it is necessary to get the story of WESB across.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-15

© 2007 IBM Corporation15 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Background and History of Service Component Architecture

High Level of SCA …

Launched around 2005, this is intended to standardize development of

applications that conform to SOA principles.
Key Vendors: BEA Systems, Cape Clear Software, IBM, Interface21, IONA Technologies PLC, Oracle, Primeton
Technologies Ltd, Progress Software, Red Hat Inc., Rogue Wave Software, SAP AG, Siebel Systems, Software AG,
Sun Microsystems, Sybase, TIBCO Software Inc.

Abstract Program Representation Abstract Data Representation

• Orients programming model around concept of

services with interfaces and references

• Graphical development tools will assist in

drawing out and generating the code

• A standardized way to represent data

• Provides for easier data interchange
• Within a mediation flow

• Between service implementations

WESB’s programming model is based on SCA, so discussing it requires we touch on SCA.

text …

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-16

© 2007 IBM Corporation16 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

High Level of Service Component Architecture (SCA)

A quirky bit of terminology …

SCA is an architectural model that seeks to abstract the actual implementation

and provide a consistent higher level model for developers and tooling
This can be a very slippery concept to some

I R
Component

A
I R

Component
B

I R
Component

C

I R
Component

D

Entry

Ext.
Resource

Other
Module

“Module”

Development
Tooling

I RComponent
Components represent a basic building block.
They represent some task or activity.

Designer then

strings together
components to
form a “module”
-- a set of tasks
that make up a
modular unit.

Module
X

Module
Z

Module
Y

Modules then
composed into
a process

The point is this is all a structured higher-
level abstract representation of the actual

implementation under the covers

Interface Reference

“Wire”

Service Data Object flows

between the components

Service Component Architecture -- SCA -- can be a somewhat slippery thing to get your mind
around at first. Ultimately it’s an development architecture … and what we see in the picture
above is a representation of some essential elements of this architecture. But when all is said and
done what results are programs that are deployed to a runtime and executed.

If we keep that in mind -- that SCA is a way to use abstract symbols to represent real code -- it
may be easier to see what this is all about.

We start out by by defining a “component.” A component represents some task or activity. A
developer sitting at a developer tool (WebSphere Integration Developer -- WID) uses the graphical
environment of that tool to draw out a “component,” then he or she defines the properties and
settings for that component. The tool is responsible for generating the actual code that implements
the functions of the component.

A component has an input (an “Interface”) and an output (more properly called a “Reference”). In
other words, the task represented by the component has an Interface that defines how the task is
invoked and what requirements it has. We’ll see more detail on what interfaces WESB supports.
The component has a Reference to whatever takes place after the component’s task is done. The
connection between the component and the next task (component) in the chain is called a “wire.”
A developer composes a flow of activities (tasks, called “components”), wires them together (draws
the lines that represents the connections) and sets the various properties and settings for
everything. Multiple components then make up a “module,” which is a functional unit of work in a
business. Multiple modules can be strung together to form a “process.” (The classic example is
the insurance claim process, which involves many individual tasks. Each task is a component.
Multiple components make up the process.)

The final point -- data flows between components. This data is repesented in a structured way,
and it’s called the Service Data Object (SDO). We have more to talk about this as well.

The highlighted box in the lower right of the chart is the key point. Try to hold onto this as we go
forward and see more details of this stuff.

Ultimately this gets generated into code that is run in the WebSphere Enterprise Service Bus.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-17

© 2007 IBM Corporation17 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

A Quirky Bit of Terminology

Service Data Objects (SDO) …

The SCA terminology has something that seems at first to be a bit backwards.

The input to a module is called the “export”, the output the “import” …

I R
Component

A
I R

Component
B

I R
Component

C

I R
Component

D

Export

Import

“Module”

Interface Reference

“Wire”

Service Data Object flows
between the components

Import

We bring this up so that you’re aware of the terminology. Much of the
SCA documentation references “Export” and “Import” and it’s

important you understand what’s being referred to.

Export to a
component

Import to a
component

If you spend any time at all reading the documentation about SCA, you’ll come across the term

“Import” and “Export” relative to components. And initially you may be confused, because the

terms are used exactly backwards from what you would think. The flow through the Interface (the

front end) of a component is called “Export” and the flow through the Reference (the backend) is

called “Import.”

There is probably a good reason for this. The author of this presentation is uncertain what this

reason is. The important thing for us is to simply understand that this terminology is being used,

and to accept it. There are many more important things to understand and it may not be worth the

effort to spend time trying to really comprehend the precise use of this terminology.

Just know it’s being used and let’s move on.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-18

© 2007 IBM Corporation18 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Service Data Objects

Messages are a type of Data Object …

A structured way of representing data handled by components and data that

flows between components. When flowing, SDO’s are in XML format.

Data Graph

A “container” (outer wrapper) for the data objects that are
held within. A message flowing will typically have more
than one data object.

Data Objects

A data object represents a piece of data. A person’s name,
an invoice number, a price, whatever. Multiple data objects
are typically part of a larger message. They too are
arranged in a tree format which represents their
relationship to one another

Each data object has:

• Name of data object

• Type of data object (simple/complex; scalar/array)
• Value (as well as the default value)

Change Summary

Represents the incremental changes made to the data
objects as the SDO moves between components.

I R
Component

A
I R

Component
B

This is often represented in a “tree” format:

Data
Graph

Root Data

Object

Data
Object

Data
Object

Data
Object

Data
Object

As we mentioned, data is going to flow between the components of a business process flow. If it
didn’t there’d be little reason to bother with this stuff -- moving data, using data, and modifying data
is what this is all about.

The designers of this SCA thing knew that if data was unstructured -- just a blob of characters --
then handling the data would be very cumbersome and difficult. It would be necessary to parse out
pieces of it, and the rules for parsing would depend on the nature of the data itself. “The address
starts at character 29 and runs 12 characters.” It would be a mess.

So they came up with a concept for representing data as it flowed between components. And it’s
all based on the notion that almost all data has a logically structured nature to it. A list of
customers can be logically arranged -- the first customer represented by their unique reference,
and then under that the elements of information related to that customer; the next customer
represented by their unique reference, and under that their information.

With that we can describe the Service Data Object (SDO). It consists of:

• Data Graph -- which is really like an outer envelope. The Data Graph is information about
what’s held within the envelope.

• Data Objects -- these are the units of information held in the SDO. As we mentioned, this is
arranged logically, based on the nature of the information. The logical representation is that of
a tree structure. The “Root” may be something like “Customers,” with the next data object
layer down the unique identifier of each customer held in the SDO. Under each of those
comes the specific information about each customer.

• Change Summary -- a way to hold information about how information within the SDO has
been changed as this SDO flows between the components of a process flow.

Understanding that data can be arranged in a logical structure like this is important because
messages are a form of data, and accessing pieces of information within a message is much
easier when the data is represented logically like this.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-19

© 2007 IBM Corporation19 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Service Message Objects

Let’s look at the “Component” …

Are a form of Service Data Object. The contents of the message is repesented

in a tree format:

I R
Component

A
I R

Component

B

Why is it important to understand this concept?

Because any transformation of the message is going to made against
this structured format. Querying specific data elements will be aided by

such a structured format. All with structured change data.

We’ll see something very similar with WebSphere Message Broker

Messages are a form of data objects, and because of that we can represent the data within a

message in a logical, structured way as well. The term “Service Message Object” -- SMO -- is

used.

Here’s why this is important -- if data is represented in a logical tree structure like this, we can

access elements of the data by reference the element in a consistent way. For example, look at

the picture above. Let’s say for some reason we want to access the SOAPHeader. In our program

we could reference that with something like this:

myVar = ServiceMessageObject.headers.SOAPHeader

That’s possible because the data is held in a logical tree structure. Were it just a blob of

characters, then we’d have to “substring” (or parse) the data out, but only if we knew where it

started and where it ended.

When we get into the WebSphere Message Broker portion of this presentation we’re going to see

something called a “message tree.” Even though WMB does not adhere to the SCA standards, it

is using similar concepts. A WMB “message tree” is a logical, structured representation of the

message.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-20

© 2007 IBM Corporation20 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

The Building Block -- the “Component”

Bindings …

This where the abstract starts to meet the “real.” The component represents

an actual implementation, with a defined interface and a defined reference to
other resources

What these two can work with is
known as the “binding” of the
component. It determines what
kind of things can use the
component. More next chart.

For WESB, this is of particular
interest. We’re going to look at
how we build a component that
represents a mediation flow.

Remember, these components end up being graphic icons in the tooling. We set properties and
define the internal implementation in the tooling. Ultimately the tooling spits out a deployable

artifact that goes in a runtime. For WESB, that runtime is … WESB.

Now we can take a closer look at the “component” and start to see some of the specifics of this

that relate to our previous discussions of SOA, Web Services and WebSphere Enterprise Service

Bus.

• The Interface of a component defines what outside the component may reference it. This is

known as the “binding.” SCA is built around the Web Services and J2EE environment, so

there are two basic things that can reference the SCA component -- a Java program or a Web

Service.

• The Reference of a component defines what it will go to to get other information. This too is

known as a ‘binding,” though it’s the reference binding while the other is the interface binding.

We see the picture above showing Java and WSDL.

• Note: we’ll see on the next chart that the list of what may interface or reference is a bit longer

than just Java or Web Services.

• The Implementation is a logical representation of what actually happens when a component is

invoked. The list of things across the bottom shows the various programming languages and

other things -- notice that they’re not all progamming languages -- that may be behind a

component. A component may well be a “human task” -- that is, a part of the process flow

where someone needs to get involved to do a manual task. For the sake of our WESB

discussion our focus is going to be on the right-most box -- the “Mediation Flow”

A “mediation flow” is one implementation of an SCA component. For WESB, we’re about to see

that WebSphere Integration Developer (WID) provides a series of “mediation primitives” -- sub-

components, if you will -- that can be used to construct the internal workings of a mediation flow

component.

But next, let’s look at the bindings of a mediation component.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-21

© 2007 IBM Corporation21 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

The “Bindings” of an SCA Component

Development tool …

These define what can invoke a component, and what a component can

invoke. It’s not “anything” -- there’s a defined set of things:

• JMS (non-SOAP messages)
• Web services (SOAP/HTTP and SOAP/JMS)

• JMS (non-SOAP)
• Web services (SOAP/HTTP and SOAP/JMS)
• JCA compliant adapters
• RMI/IIOP (EJBs)

I R
SCA

Component

These are all open standard protocols
(WMB has these and non-standard interfaces)

I R
SCA

Component

• SCA bindings (default for
component-to-component)

Service

Consumer

Service
Provider

Message

over JMS

Web Services

• SOAP/HTTP
• SOAP/JMS

Message
over JMS

EJB (RMI/IIOP)

JCA Adapter, JDBC

Web Services

• SOAP/HTTP

• SOAP/JMS

Other SCA

WESB

The “bindings” of an SCA component define what can be used to invoke the component, and what

the component can in turn invoke. The top-half picture shows the bindings possible, and the

bottom have shows essentially the same information, but formatted in a way that brings the picture

closer to home with respect to WebSphere Enterprise Service Bus:

• Service consumers can connect to and invoke a mediation flow inside of WESB using either a

message over JMS (not necessarily SOAP -- could be another format), or a Web Service

request in the form of SOAP over HTTP or SOAP over JMS.

• On the “back side” of the WESB mediation flow, where the service providers are, you have

more options: the same as input (JMS message, or Web Service over HTTP or JMS), as well

as invoking an EJB via RMI, or any of the JCA adapters WebSphere supports to access

backend data like CICS or IMS, or any relational database over JDBC, or another SCA

component.

Here’s one of the first places where we can start to position WESB and WMB. WMB permits Web

Services and JMS, as well as a good deal other non-standard connections. In that sense, WMB is

often referred to as an “advanced ESB” because of the additional connectivity options.

To build a WESB medation flow, we use the WebSphere Integration Developer product (WID) and

construct the component using what are known as “mediation primitives,” which can be thought of

as a sort of “sub-component”.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-22

© 2007 IBM Corporation22 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

The Tooling to Develop Mediation Flows

Mediation “primitives” …

From our first presentation:

Rational Web
Developer

WebSphere
Developer for

zSeries

Rational
Application
Developer

WebSphere
Message

Broker Toolkit

Eclipse

WebSphere
Integration
Developer

� Web development (servlets, JSPs)
� Web services development
� XML and DB access tools

� J2EE/EJB & Portal Development
� Component Testing
� Code Review & Runtime Analysis

� z/OS Application Development
� XML Services
� BMS Map Editor
� COBOL and PL/I DB2 Stored Procedures
� EGL COBOL Generation

� BPEL based processes
� WESB Mediation Flows

� WebSphere Broker development

All within a consistent look-and-feel framework

We’ll cycle back quickly to our picture of the tooling architecture and see that the component that

builds the WESB mediation flows is WebSphere Integration Developer (WID), which is another

functional add-on to the Eclipse base.

We are about to launch into a bit of a discussion about the programming architecture used by

WESB. It’s important to get that understood because it’s the basis for much of the workings of

WESB.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-23

© 2007 IBM Corporation23 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Mediation “Primitives”

Message Filter and XSLT …

“Primitives” are like “sub-components” -- functions you can use in

constructing your WESB mediation component.

Allows logging of whole or part of SMO to
a database table

Original message propagated through the
output terminal

Schema of database is fixed
• Timestamp

• MessageID
• ModuleName

• MediationName
• Message
• Version

Request

Augments message with information from a database

Obtains key value from message

Adds data from matched database row into message

Actions:
• Output terminal fired if key is found in DB

• KeyNotFound terminal fired if key not matched
• Fail terminal fired if an exception occurs during processing

1

2

1

2

We’re going to show several charts of “mediation primitives,” and we’re going to do it with a

hypothetical mediation flow as shown above. We’ll then walk through each primitive and explain

what it can do.

Important Note: you construct a mediation flow using the primitives you need. We are definitely

not saying you must use all these in each flow you construct.

• The MessageLogger primitive is used to log some portion of the Service Message Object (the

message received) received message to a database. The database schema is fixed, but it

does give you the flexibility to log all or a part of it.

• The DatabaseLookup primitive is used to augment a message with information retrieved from

a database. You specify a value from the message to be used as a key lookup in the

database. The data from the database row that matched the key is then added to the

message. This is not intended to be used for complex database queries … this is a more

simple key search with the entire row returned. If the key is not found, then the “KeyNotFound”

terminal (output) is where processing goes.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-24

© 2007 IBM Corporation24 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

More Mediation “Primitives”

Custom Mediation, Fail, Stop …

Message Filter and XSLT

Request

Allows messages to be routed along different
paths depending on contents

Has a dynamic number of output terminals

Allows filters to be specified which determine
• An XPath pattern to match in the message

• Which terminal to fire if the pattern matches

Can fire either the first filter to match, or all
matching filters

If no filters match the default terminal is fired

If an exception occurs during processing the fail
terminal is fired

Transforms the message from the input terminal type to
the output terminal type

May work on the whole SMO, or any part of it (body,
context, headers)

Uses the graphical XSLT Mapping Editor to help define
the XSLT

May optionally select to perform validation of the
incoming message

Output terminal fired on successful transformation

Fail terminal fired if transformation fails

1

2

1

2

More primitives:

• The MessageFilter primitive is used to determine the route a message flows, based on an

interrogation of the contents of the message. The “filters” (routing criteria) are based on

“XPath,” which is an emerging standard for a structured way to query the contents of an XML

file (and Service Message Objects are maintained in XML as they traverse components). The

number of “output terminals” is dynamic; that is, you can specify multiple destinations if

multiple filters are matched.

• The XSLTransformation primitive is used to modify the message, either the whole thing or

some portion of it. It uses XSLT to do this … XSLT stands for “Extensible Stylesheet

Language Transformations” and it is a way to transform an XML document to another format,

based on a template that describes the before and after format. This primitive would be used

when the service requester supplies an XML request document that doesn’t quite match what

the service provider expects.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-25

© 2007 IBM Corporation25 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

More Mediation “Primitives”

An Example of a Mediation Flow …

Custom Mediation and Fail, Stop

Request

1
2

1 2

Enables mediation flows to contain logic not possible
with the supplied primitives

Implementation logic may be supplied using:
• An existing SCA component or import

• A Java snippet
• Visual programming

Custom mediations can work on either the body or
whole SMO

Always have one input, one output and a fail terminal.

Fail terminal fired if any exception is generated by the
implementation

Fail:
• Causes the flow to terminate execution at that point

and a FailFlowException to be returned
• User may specify the exception error message

Stop:
• Causes execution of a particular path of a flow to

stop
• Does not terminate whole flow execution

• Leaving a terminal unwired is equivalent to wiring it
to a stop primitive

• If wired to a fail terminal will cause the failure to be
silently consumed

Returns the message

back to the requester

Invokes the
specified service

Mroe primitives:

• The CustomMediation primitive is a way for you to supply mediation logic that is not otherwise

provided in the supplied primitives.

• Note: we mentioned before that one should never code business logic in the ESB. Here’s a case where
one could end up doing that if one is not careful.

• The implementation logic for the custom mediation can consist of a snippet of Java, code

generated by the visual programming element of WID, or can involve the importation of a

separate service or SCA component.

• Stop and Fail -- there are ways to terminate the flow. The primary distinction between the two

is that Stop halts only that branch of the flow while Fail makes the entire flow cease, even if

other things are flowing. If you recall, the MessageFilter is capable of routing to multiple

branches of the flow, so it’s possible to have multiple things going on in the flow. Fail causes

the whole thing to halt; Stop causes just the branch to stop.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-26

© 2007 IBM Corporation26 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Some Examples of WESB Mediation Flows

When multiple mediation flows in WESB …

From simplest to a little more complex

A

B

The simplest -- the request is immediately routed to the
invocation of the external service
(Not required to do mediation … only if you need to)

Log a portion of
the message

Find out status of
customer based

on key lookup

Fail request if key

not found

If not Gold, then route to A; if Gold
then route to custom mediation and B

If Gold, insert status
points into message

Gold service has slightly different
XML input format, so transform XML

Non Gold
customer

Gold
customer

We we put the puzzle back together with two examples of a mediation flow. In the top portion we

show the very simplest example -- a request (which is really the definition of the “interface” to the

component) and an “invoke operation,” which could mean a connection to another component, or

an invocation of a web service. It’s essentially a “straight-through” operation -- in and out. It

illustrates an important point about the ESB … doing mediation or message transformation is not

required. It’s there if you need it, but if you don’t require it you can provide a simple pass-through

mechanism like this.

The second example is a bit more complex:

• The request is received and the processing flows to a MessageLogger primitive. Some portion

of the message is logged to the database.

• The DatabaseLookup primitive is used next to look up the status of the customer in the

database based a key that’s part of the message. This is to determine if the customer has

“gold” status or not. The status is added to the message. If the lookup doesn’t work, the whole

flow goes to a Fail primitive and an error message flows back.

• The flow proceeds to a MessageFilter primitive, where routing is going to be done based on

the newly-inserted status of “gold” or “regular”. If a non-gold customer, then the flow is routed

to the invocation of an external service A; if gold, then we flow to an XML transformation

primitive.

• In the XSLTtransformation primitive is used to transform the originally received XML into a

different format so the gold customer’s service can be invoked properly. Once the

transformation has been completed, the flow proceeds to the invocation of that service.

An instance of WESB won’t likely have just one flow defined to it; it’ll have several (perhaps

hundreds). So how does WESB know how to correlate a received message with the particular flow

to utilize? It’s based on the bindings defined to the interface of the module.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-27

© 2007 IBM Corporation27 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

WESB Hosting Multiple Mediation Flow Modules

Cycle back … the big picture …

It’s capable of having many such mediation flows deployed. How then does

WESB know which flow to invoke upon receiving a message?
It has to do with the “bindings” on the interface of the module. That defines where the module
expects to receive input.

Module

/xyz/789

Module

/xyz/357 Module

/abc/468

For modules with SOAP/HTTP bindings:

WESB maintains a table of URIs associated with
each module. When a URI is received, WESB
invokes the module with the matching binding

For modules with JMS bindings

WESB maintains a table of JMS destinations
(“queues”) associated with each module. When a
message is found at a destination, WESB invokes
the module with the matching binding

Module

Dest:XYZ

Module

Dest:ABC Module

Dest:JKL

Very similar to what WebSphere Application Server itself does to association
inbound requests with application -- webapps, web services, etc.

Service
Consumer

/abc/468

Service
Consumer

Dest XYZ

When multiple mediation modules are deployed into WESB, the way it knows how to correlate a

received message to a particular module is based on the defined bindings of the interface. In

many ways it works like WebSphere itself does when a URL is received. Let’s look at this from two

perspectives -- for SOAP/HTTP and for SOAP/JMS:

• SOAP over HTTP -- when multiple mediation modules are deployed into WESB, WESB will

read the deployment descriptors for the modules and maintain in an internal table a listing of all

the URI strings -- context roots -- in its runtime. Then, when a request is received, WESB

matches the URI against its listing of deployed modules and if it finds a match it invokes that

particular module. As mentioned, this is very similar to how web modules are invoked for

standard browser requests in WebSphere Application Server itself.

• SOAP over JMS -- the bindings on modules set up for SOAP over JMS will define a

“destination,” which is similar in concept to a queue. WebSphere will monitor the destination

and when a message comes in on the destination, and then match it to the modules defined

with that destination as part of its binding.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-28

© 2007 IBM Corporation28 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

WESB Provides the SCA Framework On Top of WebSphere

How it’s installed …

WebSphere itself is a J2EE and J2SE runtime environment. WESB provides

the code that allows SCA modules to run on WebSphere -- and form the ESB

SCA Framework
(Where modules developed to

the SCA specification run)

Development
Tooling

WebSphere Application Server

J2EE runtime framework
of WebSphere

Communications, security,
management and other runtime

framework of WebSphere

When run on z/OS … then the z/OS

hardware and software framework
is part of the picture as well.

WebSphere
ESB

installation
media

Not just SCA framework, but it is
definitely one of the things WESB brings

to WebSphere Application Server

These are the basics:

• Mediation is the acting upon a message
received by the ESB

• The mediation is performed by SCA-
compatible modules

• Those run in a framework supplied by WESB

• WESB runs upon the framework supplied by
WebSphere Application Server

WESB
EJBs

Here again is a big picture representation. What we see is a kind of progressive layering of

capabilities, starting with the lower level functions provided by the z/OS software and hardware

stack; then building up to the communications, security and other runtime framework elements of

WebSphere Application Server itself. WebSphere of course has a fully compliant J2EE runtime

environment, which is where the WESB product operates. WESB provides the SCA framework in

which the mediation flows are executed. WebSphere Integration Developer is what creates the

mediation modules using the graphical environment and the “primitives” we described earlier.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-29

© 2007 IBM Corporation29 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Exploitation of System z Strengths

A peek at WebSphere Process Server …

Not so much by WESB directly, but by virtue of WebSphere Application Server,

which is the runtime framework on which WESB operates:

MVS Image

AppServer

DB2

CICSPlex

MVS Image

CF

T
C

P
T

C
P

DVIPA

Sysplex
Distributor

Service
Consumer

WebSphere
Cluster

AppServer

WESB

WESB

MQ

All have

capability
to exploit

Parallel
Sysplex

WLM providing goal
management and
internal routing servies

Single security
interface: SAF

This is essentially the
same picture we showed

for WebSphere / Web
Services exploitation of

System z

WESB is essentially a special-purpose application that runs inside of WebSphere Application

Server. WebSphere Application Server is capable of taking advantage of the underlying strengths

of the z/OS platform, through such things as WebSphere clustering across multiple LPARs in a

Parallel Sysplex. Sysplex Distributor and DVIPA out front can be used to route work to the copies

of WESB running in the cluster members, and behind the scenes the shared capabilities of Parallel

Sysplex for things like DB2 data sharing, or CICS or MQ, can be taken advantage of. And of

course underlying this whole picture is WLM, which is managing the workload of it all.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-30

© 2007 IBM Corporation30 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

A Peek At What’s Coming Later

Reference information …

Later we’ll look at WebSphere Process Server (WPS), which it turns out has

WESB inside of it. WPS provides full “Process Choreography”

WESB

WebSphere Process Server
“Process Choreography” is the act of

marshalling a more complex set of
tasks -- SCA modules and other

business tasks -- into a business flow.

This is the tying together of the
reusable services -- I/T services and

human task services -- into a
“choreographed” (“defined”,
“controlled”, “organized”) flow.

WPS is the engine that does this. It

makes extensive use of WESB inside of
itself as well as the SIB of the

underlying WebSphere.

Here we’ll offer you a peek at what’s coming later when we talk about WebSphere Process Server

(WPS). That product, it turns out, has WESB folded in under the covers. Install WPS and you’ve

got WESB. Why? Because you can think of WPS as a super-set of WESB. WPS brings to the

table all that WESB does, as well as the ability to compose higher level business processes that

are comprised of different tasks. WPS “choreographs” (coordinates the flow) of those processes.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-31

© 2007 IBM Corporation31 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Reference Information

Next: WebSphere Message Broker …

http://www.ibm.com/developerworks/java/library/j-sdo/

http://www.ibm.com/developerworks/library/specification/ws-sca/

http://www.ibm.com/software/integration/wsesb/

WebSphere Enterprise Service Bus

Service Component Architecture

Service Data Objects

Redbook

http://www.redbooks.ibm.com/

SG24-7212

Has a very good overview of SCA and SOA as well

Reference information for WESB.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-32

© 2007 IBM Corporation32 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

An introduction to

WebSphere Message Broker

(WMB)

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-33

© 2007 IBM Corporation33 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

The Highest of Overview Pictures

What WMB is …

At the high conceptual level, WebSphere Message Broker (WMB) is a lot like

WebSphere Enteprise Service Bus:

Service
Consumer A

Service
Consumer B Service

Provider X

Service
Provider X

WebSphere Enterprise

Service Bus

WebSphere

Message Broker

• Both are IBM product
implementions of the ESB

concept

• Both host “flow programs” that
determine where requests go
and if any changes are made to
them as they travel through ESB

• Both support a range of ways to
connect to them

• Both are implemented on z/OS
as a series of started tasks and
address spaces

• Both employ Eclipse-based
tools to develop their flows

• They can communicate between
each other.

• WPS can choreograph
processes in either

• WESB built on WebSphere Application Server

• WMB built on WebSphere MQ

Let’s look at what WMB does before we get into too many “positioning” questions

If we start this discussion at a really high level, we see that WebSphere Message Broker (WMB) is

a lot like WESB, at least conceptually. The text along the right side of the chart summarizes how,

at the conceptual level, the two are similar.

The physical picture also illustrates this -- both products are middleware impelentations of the ESB

concept which maps onto your corporate network and provides an intermediary between your

service consumers and your service providers.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-34

© 2007 IBM Corporation34 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

What WebSphere Message Broker Is

The Physical Implementation …

It is a powerful message flow runtime environment, with a wide range of

connectivity options:

Service

Consumers

Service
Providers

Message
Flow

WebSphere Message Broker
� MQ
� JMS
� HTTP
� SOAP/HTTP
� SOAP/JMS
� FTP
� SCADA

� MQ
� JMS
� HTTP
� SOAP (HTTP or JMS)
� JDBC
� More (we’ll see in a bit)

Message
Flow

Much more to explore:
• How a message flow is constructed
• What comprises a flow
• How a flow is deployed and executed

� XML
� non-XML

WebSphere Message Broker is a “message flow” runtime execution environment. We’ll go into a

great deal more detail about what a “message flow” is. WMB has a remarkable suite of

connectivity options on the front end, and an impressive list of connectivity options on the back

end. It takes as a message format XML as well as non-XML, and have a powerful capacity for

message transformation within the Broker itself.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-35

© 2007 IBM Corporation35 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

The Physical Implementation of WMB on z/OS

Focus on programming capabilities …

WMB is built on MQ. The physical structure looks like something like this:

Broker

Message Flow
Execution
Engines

MQ

Queue
Manager

Configuration
Manager

DB2
RRS

RRS for transaction
management

MQ for intra-Broker communications as well
transport for inbound and outbound messaging

DB2 repository for configuration information

and message flow registration

This is a rough

approximation of the
address space structure

of MQ Broker

What goes on inside the Broker is what’s really interesting.

The WMB message flows are incredible powerful.

WebSphere Message Broker is built upon the MQ base. As such, it’s comprised of a Queue

Manager, a “Configuration Manager” (along with some backing database tables in which the

configuration and message flow information is maintained) and the Broker itself. This picture is an

approximation of the actual address spaces used for WMB -- in truth the “Broker” piece of this is

multiple address spaces, depending on how many “exeuction groups” you have defined.

The Queue Manager is used for the handling of message-based communications, either from

outside of WMB or within WMB. The Configuration Manager is the coordination point for managing

the configuration of the system. The Execution Groups are where message flows actually run.

This picture puts WMB into a “real” perspective for you. But it doesn’t really tell the story of what

goes on inside of WebSphere Message Broker. That’s the story we tell now.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-36

© 2007 IBM Corporation36 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Message Handling Intelligence in the ESB

Broker Toolkit …

Again, we need to talk about the programming capabilities of the ESB

Something called a
“Message Flow”

WMB’s built in capabilities are far more extensive than WESB’s. Much of this
story is going to be told by reviewing these built in capabilities.

Similar to WESB’s
mediation flow in

concept.

Just like with WESB, we can’t really tell the story of WMB without going into some depth on the

programming capabilities of the product. That’s where the power is going to become evident. For

WMB, that means we’re going to talk about “message flows,” which are similar in concept to the

“mediation flow” of WESB. WMB is not SCA, however, and it has more capabilities.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-37

© 2007 IBM Corporation37 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Broker Toolkit

Nodes …

Yet another “Eclipse-based” tool used to create WMB message flows:

“Palette”
that contains
the various

nodes

Message Flow Editor --
graphical drag/drop

environment

Property settings for
the selected node

This is like any graphical
environment -- takes some time

to get proficient.

You’ll see all of this in lab

The deployment
artifact is the BAR file
… Broker ARchive

The tool used to create a WebSphere Message Broker “message flow” is the “Broker Toolkit.” It is

yet another Eclipse-based tool. We refer back to our picture showing where the Broker Toolkit sits

in relation to other things we’ve seen -- Rational Application Developer, WebSphere Developer for

zSeries, WebSphere Integration Developer, and now WebSphere Broker Toolkit.

It is in the Broker Toolkit that you’ll “draw out” your flow and set the properties. Like any graphical

environment it’ll take a little getting used to before you become comfortable. (Recall your first

experience with Powerpoint and recall how intimidating it was initially.) You’ll get an opportunity in

the lab to do just this -- create a message flow. It’ll seem like a lot of point-and-click, but our hope

is you’ll at least see the basic concepts at work.

The deployment artifact is the BAR file. It is what gets deployed into the Message Broker. They

run in the Execution Engines

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-38

© 2007 IBM Corporation38 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Nodes

Nodes are the basic building blocks of a message flow. They represent

functional routines that encapsulate the flow logic. Nodes are used to create a
flow, which represents the “reusable integration application” inside the ESB:

Broker Toolkit offers a
“Palette” with nodes
available for use

Message

Key Points:

• Each node has a set of properties, such as the MQ
queue name, or the URL of the requested web
service, etc.

• Compute nodes contain your integration logic
Compute = ESQL (WMB Language)
Java Compute = Java

• Many nodes exist that are not shown here
Nodes that come with WMB
Nodes you can add to WMB

Built-in Nodes …

We start the discussion by focusing on “nodes,” which are the elemental building blocks of a

message flow. A node represents some kind of functional routine that’s used to act upon a

message. Each node has in input terminal and some number of output terminals (depending on

the node). Connections between nodes define how a message is to flow.

Note: Does this look familiar? It should … the SCA model is very similar to this. But it should be noted that
WMB is not SCA-compliant. WMB uses its own graphical-abstraction model. It’s similar to SCA, but it is not
SCA.

You’ll “draw” these nodes onto the Broker Toolkit “canvas” by selecting the nodes from a “palette.”

If you’ve done any work at all in something like Powerpoint, you’ll get the drag-and-drop nature of

this very quickly.

The keys to this are as follows:

• Each node has a set of properties that you define to it. For instance, a MQInput node has

properties that define the queue name, the message type expected, whether the Broker is to

maintain it within a transactional scope. A good deal of the effort of creating a message flow is

knowing what properties to set and how to set them.

• Compute nodes are what contain your integration or transformation logic. There are two basic

compute nodes -- a Java compute node which takes Java as its programming language; and

the regular Broker compute node which takes Broker’s programming language: ESQL. We’ll

talk more about ESQL, but for now understand it’s a kind of procedural language.

• This picture is showing only a small handful of nodes. We’re about to show you a whole bunch

more. There are two basic types of nodes -- those that are “built-in” to the Toolkit; that is

supplied with the tool … and those that can be downloaded and installed into the Toolkit to

provide additional functionality.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-39

© 2007 IBM Corporation39 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Built-in Nodes: Input/Output Related

More built-in nodes …

The Broker Toolkit comes with a set of built-in nodes you can use to start

building message flows right away. Additional nodes are downloadable.
The downloadable nodes come in the form of SupportPacs. More in a bit.

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp

The WMB InfoCenter has an excellent description of what each of these nodes
do. Just search on node name. URL for InfoCenter:

Read message
off queue

Write message
to queue

Read message
off queue

Send response
to queue
indicated by
requester

Related to
pub/sub

Receive HTTP
request

Send web
service
request to
URL

Reply to
original
requester

Receive from
JMS destination

Reply to JMS
destination

JMS to MQ JMS
transform

MQ JMS to JMS

transform

Receive from
telemetry device

Receive to
telemetry device

Receive over MQ
JMS real time
transport

Real time pub/sub

MQ HTTP JMS Telemetry and Real Time

We’re now going to on a survey of the various nodes that are part of Broker’s functionality. And

we’re going to do this first by built-in nodes, then by add-on nodes that are supplied as something

called a “SupportPac.” There are too many built-in nodes to include on one chart, so we’ll do a

survey by type. We start with Input/Output related nodes.

This we break down into four categories: MQ, HTTP, JMS and Telemetry/Real-Time. Space in

Powerpoint’s “speaker notes” function won’t allow a full description of each.

• MQ -- The basic ones are MQInput and MQOutput, but others exist as you see on the chart. If

the flow originates and ends with a message to/from a queue, you’ll make use of these. Within

the properties of the node you set the queue name.

• HTTP -- three types here: HTTP Input (which would be used when the request flows in over

HTTP); HTTP Request (when you want to invoke an external HTTP site to get information … it

can be a Web Service but it doesn’t have to be); and HTTP Reply when you want to reply back

to the original requester … much like a normal web site does.

• JMS -- JMSInput and JMSOutput are used when JMS is the transport mechanism; the two

transform nodes modify the header so a message can flow between JMS and MQ.

• Telemetry and Real Time -- nodes we might not normally think about, but they’re heavily used

in the process and monitoring industry. SCADA is an industry standard protocol for picking up

input from telemetry sensors. The MQ “real time” support maps to MQ’s function of the same

name.

The WMB InfoCenter is an excellent source of information on these things. The URL on the chart

gets you to the front page, and from there you can do a search.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-40

© 2007 IBM Corporation40 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Build-in Nodes: Routing, Transformation and Database

SupportPacs …

Routing Transformation Database

Route based on
message content

Used with
RouteToLabel

Route to topic
subscribers
(pub/sub)

Route to label
node

Beginning of
message fan-out

End of a fan-in

Related to fan-in/fan-

out messages

Construct new output

message with ESQL

Construct new output
message with Java

Transform XML
using XSL

Populate
message with
new content

Forces reparsing
of the message

Interact with database
using ESQL

Insert data into table

Delete data from table

Update data in table

Store entire message (or

part) in database

Those were the “built-in” nodes. More nodes are
possible. They can be added to your Toolkit.

They come packaged as “SupportPacs”

We explore more:

• Routing -- these are used to affect the routing of messages within a flow. The most common

one is the Filter node, with is similar in concept to the MessageFilter primitive from WESB.

This will route based on message content. The other nodes are for things like

“publish/subscribe” and routing to multiple endpoints.

• Transformation -- these are the message handling workhorses. These you can “program”

with code to do custom modification of the messages as they go through the message flow.

For non-Java the most common would be the “Compute” node, which takes as input Broker’s

ESQL language. (We have more to say about ESQL in a bit.) For Java, the JavaCompute

node is provided. Like WESB, Broker has an XMLTransformation node that uses XSLT. The

Mapping node can be used to indicate how message content can be remapped to different

content.

• Database -- nodes that provide JDBC access to a relational database. This can be used to

log information, or extract information you want to put into a message, or to validate some

portion of a message based on information provided in a database table.

Those are the “built-in” nodes. Now we’ll look at some of the “SupportPac” nodes.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-41

© 2007 IBM Corporation41 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

WebSphere MQ SupportPacs

z/OS specific nodes …

Downloadable code and documentation that complements the WebSphere MQ

family of products, including Message Broker.
http://www.ibm.com/software/integration/support/supportpacs

The utility we’ll use in lab to put a
message on an MQ queue comes from
here (IH03 SupportPac)

The CICS Request node we’ll use in
lab (IA12) comes from here

Provided in the form of a ZIP file.
Installation differs from node to node:

Use “Install Features” of WMB
Unzip directly into file structure

(Each comes with PDF instructions)

Others:
• FTP
• POP3 e-mail
• WSRR

• TCP sockets
• etc.

WebSphere MQ SupportPacs is a way to supply additional functional to customers outside the

maintenance stream. The URL at the top of the chart provides the location where you can go for

the main MQ SupportPac page.

There are four “categories” of SupportPacs. The ones we’re interested in for this workshop are

Categories 2 and 3 -- Freeware and Product Extensions. In lab we’re going to use a tool called

“rfhutilc,” which is really a workstation graphical tool that’s really handy for placing messages onto

an MQ queue and reading them back off. That’s a Category 2 SupportPac called IH03. In lab

we’re also going to use the CICS Request node, which is packaged as the IA12 SupportPac and is

supplied as a “Product Extension” Category 3. There are more Category 3 packs that provide

nodes to Broker -- FTP, POP3, WSRR (WebSphere Services Registry and Repository … we’ll talk

about that more in a little bit), and TCP sockets.

You should be able to see the basics of this -- IBM supplies these things as optional downloadable

function you install into your Toolkit for use if you desire that function. Each SupportPac installs in

a slightly different way, so it’s always best to read the README and the PDF that comes with

each.

Now let’s look at the z/OS-specific nodes that are available.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-42

© 2007 IBM Corporation42 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

z/OS Specific Nodes

Parsing the received message …

These nodes are designed to interact with specific z/OS resources.

IA11
File Adapter for z/OS

sequential files

IA13
VSAM

IA12
CICS

File format:
•QSAM
•F,FB,V or VB only

Has a z/OS-side
component that needs

to be installedHas a z/OS-side
component that needs

to be installed

These SupportPacs extend

the function of WMB to do
z/OS-specific things

Provides local access to
CICS

(Note: there are other ways to

access CICS without this node.
More on that later.)

Here we take a look at a few SupportPacs related specifically to z/OS.

• IA13 -- VSAM nodes. This is used to access VSAM datasets on z/OS. You can you read or

update, add or delete information from a VSAM dataset. This support pack requires a z/OS-

side component be installed. That’s what gives the SupportPac the necessary API support on

z/OS to do what it’s trying to do.

• IA11 -- Sequential datasets … specifically, QSAM data sets with F, FB, V or VB record format

only. Here again, a z/OS-isde component needs to be installed.

• IA12 -- CICS Request. This SupportPac we’ll use in class. With it, you can invoke a CICS

transaction using the EXCI interface of CICS. The results come back in COMMAREA format,

which your flow will then need to handle.

There’s a very important element of this story we need to cover next. It has to do with how Broker

reads in (or “parses”) a received message so it can create the “Logical Message Model” (a concept

very similar to what’s used by WESB and its “Service Method Object”.)

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-43

© 2007 IBM Corporation43 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Parsing the Message … and the Logical Message Model

ESQL …

The Input node of a message flow parses the message and constructs a

“logical message model” -- a structured representation of the data:

Inbound
Message

01 TRANSACTION.

10 CUSTOMER.

15 FIRST-NAME PIC X(15).

15 LAST-NAME PIC X(30).

10 ADDRESS.

15 STREET PIC X(30).

15 CITY PIC X(25).

15 STATE PIC X(20).

15 ZIP PIC X(5).

Root

Headers Transaction

Customer Address

First Name Last Name Street City State Zip

CICS
COPYBOOK

• Input node has built in parsers:
� BLOB – No structure, just a sequence of bits
� XML, XMLNS, XMLNSC – Self defining,

generic XML message
� MRM – Fixed record structures,

tagged/delimited or XML
� JMS – Standard folder structure for a JMS

message
� These parsers can be supplemented with user

written custom parsers or those purchased
from a third party

• You can define modeling by importing
COPYBOOK, C Header Files or XML
DTDs or schema

• This provides a consistent model
throughout WMB, and provides for very
fast data access.

A lot of flexibility here …

WMB06 workshop goes into
far more detail.

Similar in concept to the Service
Data Object we saw for WESB

Message Broker cannot assume that every message is going to be received with its data formatted

in exactly the same way. That should be obvious. So it’s necessary for Broker to read in -- to

“parse” -- the incoming message. This is something done by the input node, and it’s related to a

broker concept called the “Message Set”. You’ll get to work with “Message Sets” in the lab, but in

summary it is a way for Broker to be told what to expect of the message coming and, and how to

parse it.

Why parse it at all? Because what we’re trying to get at is a structured representation of the data

in the message so subsequent nodes can access the data in a much easier fashion. If the text was

just a string of characters, we’d have to tell subsequent nodes how far to go into the string and how

many characters a given piece of data actually was. But if we construct up a “logical message

model,” this allows nodes to quickly address data in the message structure. In the picture above

the customer’s last name is accessible via:

Root.Transaction.Customer.LastName

Note: that’s not an exact representation of the syntax of accessing data, but it’s close. In lab, if

you look at the ESQL being used, you’ll see syntax somewhat similar to that.

How can we tell Broker what the incoming message is going to look like? It depends on where the

message is going to come from. If the message is coming in the form of a return from CICS, we

can supply the Broker Toolkit with the COBOL COPYBOOK which provides the language structure

of the message. The Broker Toolkit can then generate code which is used by the message flow to

parse the received message and construct the logical message model accordingly.

There’s a lot more to this. The concept of the “logical message model” is very key to the Broker’s

functionality. Accessing data in the message, modifying data in the message, using data from the

message to do lookups -- all rely on a logical message model. As mentioned, the concept is very

similar to Service Data Objects and Service Method Objects from Services Component

Architecture.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-44

© 2007 IBM Corporation44 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

ESQL - Extended Structured Query Language

The flow we’ll build in lab …

ESQL is a programming language defined by WebSphere Message Broker to

define and manipulate data within a message flow.

Data types

INTEGER

FLOAT

DECIMAL

STRING

DATETIME

BOOLEAN

REFERENCE

NULL

...

Operators

- + * /

||

AND OR NOT

= <> > >= < <=

IN BETWEEN

LIKE

IS EXISTS

Statements

Basic
DECLARE

SET

IF ENDIF

WHILE

Tree
MOVE

CREATE

DETACH

ATTACH

Database
INSERT

DELETE

UPDATE

PASSTHRU

EVAL

Node
PROPAGATE

RETURN

THROW

...

Functions

String
LENGTH

TRIM LTRIM RTRIM

OVERLAY

POSITION

SUBSTRING

UCASE LCASE

Numeric
ABS

BITAND NOT (X)OR

MOD ROUND

SQRT

TRUNCATE

EXTRACT

Datetime
EXTRACT

CURRENTDATE

CURRENTTIME

Field
BITSTREAM

CARDINALITY

FIELDTYPE

SAMEFIELD

Complex
CAST

SELECT

...

IF (XML format required) THEN

OutputRoot.Properties.MessageFormat = 'XML';

ELSE IF (custom format)

OutputRoot.Properties.MessageFormat = 'CWF';

ELSE IF (SWIFT format)

OutputRoot.Properties.MessageFormat = 'TDS';

ENDIF;

Compute
Node

IF Body.Person.height > 183 THEN

INSERT INTO Database.TallPeople

(Name,Height,Age)

VALUES (Body.Person.Name,

Body.Person.height,

Body.Person.age);
ENDIF;

Data Insert
Node

Can use ESQL in any of the following nodes:
• Compute node
• Database node
• Filter node
• DataDelete node

• Datalnsert node

• DataUpdate node
• Extract node
• Mapping node

• Warehouse node

Remember - Java Compute Node available to
leverage Java programming skills

ESQL is Message Broker’s structure query language for its nodes, including the Compute node

and the nodes shown at the upper left of the chart. ESQL is a kind of procedural language, tailored

to be particularly powerful at handling access to data contained within a structured, logical

message model. (Hence the focus on the Logical Message Model on the previous page.) With it

you can query data elements within a message, change them, do computation work on them,

substring out smaller increments … pretty much anything you can do with any programming

language.

Note: The Java compute node is provided for those who wish to leverage Java expertise.

To illustrate how and why ESQL would be used, let’s look at the flow we’re going to build in lab.

We’ll show where ESQL we’re going to supply you will be employed in the flow.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-45

© 2007 IBM Corporation45 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

An Example: The Lab Flow

Deploying the BAR into Broker …

Here’s a picture of the “request flow” we’ll build in the lab.

XML
received in

queue

COMMAREA
constructed from

information in initial
XML message

Failure and Catch
terminals routed to

Compute node

If message flow has trouble retrieving message

off queue, this extracts the error message

A queue designated
for error messages

Out terminal
routed to
TryCatch

Catch terminal routed
to compute node

CICS tran
executed

CICS

Tran

If CICS tran fails, this
builds failure message

A queue designated for
failure messages

COMMAREA data
placed in queue

ESQL

ESQL

ESQL

There’s another half to this we’re
now showing here -- the “response”

flow. Similar in concept.
<Customer>

<CustNo>1</CustNo>

</Customer>

RFHUTILC
IH03 SupportPac

This is actually one-half the flow we’ll build in lab. This is the request flow -- the flow that will be

executed when the request is first received from the service consumer. We see that ESQL is used

in three different compute nodes in this flow. Let’s look at what’s going on:

• The input message is going to consist of a simple XML with an integer representing a

customer number. We’re going to use the IH03 SupportPac to put that message on the input

queue.

• Going to the top of the chart -- if for some reason Broker has trouble pulling the message off

the queue, it’s going to go up to the compute node where ESQL will extract the error message,

then route the error message to a queue designated for that purpose.

• Assuming Broker pulls the message off the queue okay, the message will flow down to the

compute node just prior to the CICS Request node. There the input -- XML -- will be formatted

into the appropriate COMMAREA format so the CICS request can be done. The reformated

input message then flows to the CICS Request node. If the processing in the compute node

fails, the failure flows back to the “TryCatch” node and then up to the other compute node

where the failure message will be extracted and flowed over to the failure queue.

• The CICS Request node then issues the request against CICS. If things work okay, the

returned COMMAREA message is then placed on the queue for processing by the response

flow, which is not shown on this chart (not shown because things would get too busy on the

chart). But if things fail in the request to CICS, then the failure flows up to the compute node

where the failure message (this is a different failure message from the one possibly thrown by

the earlier compute node) is extracted and flowed over to the failure queue.

So you see three different uses of ESQL -- (1) to extract the error message, (2) to transform the

input XML to COMMAREA, and (3) to extract the failure message.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-46

© 2007 IBM Corporation46 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Deploying the Packaged Message Flow

The Big Picture …

This is done from the Broker Toolkit, which has a connection to the

Configuration Manager region of Broker up on z/OS

Broker

Execution

Engine
MQ

Queue

Manager

Configuration

Manager

DB2
RRS

Broker
Toolkit

Domain
Connection

• The BAR file is packaged by the Toolkit

• The Domain Connection defines the
host and port of the CMGR

• The BAR file is transferred to the CMGR

• The flow is deployed into the Broker

• The CMGR updates the DB2 repository
with information about the deployed
flow

The Broker can handle many deployed

message flows, just like WESB could.

Relating the request to the flow is similar to how WESB does it:

URL defined to HTTP input node
Queue on which a message is received

Deploying the constructed message flow -- held in a BAR file -- is done from the Broker Toolkit.

One of the things the Toolkit provides is “Domain Connection” to the Broker’s configuration

manager running on z/OS, with the ability to “Deploy Archive” to a selected execution group. An

execution group relates to an address space on z/OS where the flow will run.

The act of deploying the BAR file really involves two things: deploying the artifacts into the

Broker’s execution engine; and updating the configuration manager so it’s aware of the deployment

and the current status of the flow.

The Broker is capable of hosting many deployed message flows … not just one. And many can

operate within any given execution engine. So how does WMB differentiate one flow from another

when a message is received? In a manner very similar to how WESB did. It’s all based on the

definition of the input node. If an MQInput node, then receipt of a message on the queue

referenced in the properties of the MQInput node will trigger the execution of that flow. WMB

maintains an awareness of what flows are associated with what queues. Similarly, a flow with an

HTTP input node will associate the URI value just like WESB did.

Let’s now look at the big picture …

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-47

© 2007 IBM Corporation47 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

The Big Picture

The Service Repository …

Message Broker

Message on JMS
• Web Services SOAP
• non-SOAP

• XML or not

Message on MQ
• XML

• non-XML
• .NET

Request on HTTP
• Web Services SOAP

• non-SOAP
• XML or not
• .NET

Other SupportPacs
• FTP
• POP3 e-mail
• TCP sockets

Telemetry Devices
• Sensors
• Monitoring devices

WebSphere

MQ

JMS
HTTP(S)

HTTP(S) Web Services
RMI

CICS

MQ

MQ CICS Bridge
HTTP(S)

CICS Node

IMS

MQ

MQ IMS Bridge
HTTP(S) via SOAP GW

JDBC to IMS DB

DB2Database Node
HTTP(S) via WORF

Third Party
SAP, .NET

MQ
JMS

Third-party Nodes
HTTP(S) Web Services

RMI

Telemetry
Devices

SCADA

Other

Other

Service Requesters

Service Providers

Once inside … routing and message
transformation, data remapping, protocol

conversion, pub/sub, transaction
management, logging, monitoring

This picture is trying illustrate all the different way to flow input to the Broker, what can be done

inside the flow, and what connections are available to backend data resources. This is a complex

picture, but it shows the power of WebSphere Message Broker.

• On the input side, several different nodes provide input via HTTP, MQ, JMS or other forms.

The input can be standardized Web Services, non-standard format, or even .NET. The

message format itself can be XML or not.

• On the inside, there are nodes to affect the routing a message flow takes; nodes to transform

the message content, message format or protocol; there are nodes to insert data, subtract data

or remap data. And remember, while traversing the flow, the message is in the “logical

message” format, which means access is structured and fast.

• On the service provider side nodes are present to give access via MQ JMS, HTTP, JDBC or

direct access to CICS. Coming out with MQ, JMS, HTTP -- Web Services or not -- we have

access to WebSphere, CICS, IMS, DB2, third party products and telemetry devices. And

overarching the whole thing is the knowledge that if the access to WebSphere intially, then

WebSphere itself has all sorts of connector support to get to CICS, IMS, DB2 or third party

products.

There you have the “big picture” -- a powerful message transformation and routing function,

implemented in middeware, that rides on top your existing networking infrastructure. Earlier we

defined ESB as just that. Here we see WebSphere Message Broker as an ESB … many call it the

“Advanced ESB” because of its capabilities.

We’re now ready to investigate a “services repository” function -- WSRR.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-48

© 2007 IBM Corporation48 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Small Detour

WebSphere Services

Registry and Repository
(WSRR)

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-49

© 2007 IBM Corporation49 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

WebSphere Service Registry and Repository …

Setting the Stage for Discussion of “Registry and Repository”

There are two fundamental things a registry and repository is going to provide:

Enterprise Service Bus

Registry and
Repository

As a runtime source of information,
retrieved programmatically

As a organized and centralized source
of information for planning, developing

and managing the SOA environment

Enterprise Service Bus

Registry and
Repository

This is perhaps the more common use of
a registry people think about …

… but overlooking this means you’ll miss
what IBM is planning for this function.

Imagine trying to control this if the information was scattered across different

notebooks, spreadsheets, yellow sticky notes on the wall, in their heads, etc.

To begin the discussion of the WebSphere Service Registry and Repository function, it’s useful to

consider the two fundamental things a registry and repository provides: one is a place where

runtime components can go and retrieve information programmatically so things are more dynamic

in that environment. This is probably the first thought that comes into people’s minds when they

think “registry” and “SOA.”

But the second thing the registry and repository function does is provide a organized and

centralized place for information about the SOA. This is really quite critical because without it an

SOA beyond a small pilot implementation would quickly become unmanageable. Imagine an

environment where this kind of information was scattered across a dozen different places, some

accessible and some not. That’s the world you’d be facing without a repository.

This second reason for a registry and repository is what IBM has in mind for the WebSphere

Service Registry and Repository (WSRR) product. It’s not just a service endpoint registry (though

it is that … it not just that), but also a place where the information can be gathered and structured

so it can be used for planning and control. This maps directly to the governance topic we’ll discuss

later and the four stages IBM proposes: model, assemble, deploy, manage. Each one of those

phases involves using and updating information. A single, well-organized place for that information

is critical.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-50

© 2007 IBM Corporation50 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

WSRR … What It Is Physically

An example …

It’s a sophisticated WebSphere J2EE application with a relational data store:

User Interface

Browser

Eclipse
Plugin

WebSphere Application Server

J2EE Application:

WebSphere Service Registry
and Repository

Distributed z/OS

DB2 V8 +

WebSphere z/OS 6.0.2 +
z/OS V1.7 +

Programmatic Interface SOAP RMI/IIOP

Developers, Designers and
SOA architects

SOA runtime components - ESB, requesters, process manager
Tools to monitor and manage the environment

This is designed to be more than just a place where service
endpoints are registered, or WSDL files stored.

Our first picture showing WSRR will be a physical representation. We do this because we want

very much for you to overcome the somewhat mysterious nature of this thing and come to

understand the essentials of it.

WSRR is, at its core, a sophisticated EJB application that runs inside of WebSphere Application

Server. It has behind it a sophisticated database definition. It provides human access in the form

a browser interface and an Eclipse tool plugin interface. It provides programmatic access using

either SOAP or RMI/IIOP. All this is designed to provide not just the runtime registry, but also the

informational repository so things can be planned, modeled, monitored and queried in a controlled

way.

Next we’ll see a simplified example of how this might be used.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-51

© 2007 IBM Corporation51 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Evolving standards …

Fine Grained Queries and Associations

To give you a sense of this, consider the following:

WSRR

Service Developer
develops service and
publishes service info
(and WSDL) to WSRR

WSDL

“Decomposes” the document and
stores its elements in the tables.

(Stores actual document as well)

Service Implementation
deployed. WSRR updated

with this information.
Service A

Service X

Integration Architect
queries WSRR, determines

service availability and
requirements, then updates

WSRR with info about
who’s using Service A.

WSRR now has information about the service, provides for fine-grained queries
against individual elements of service artifact, has information on status of

service, and has information about what other things are using the service.

Service Y

Service Z

1

2

3 4

This is more than just a simple registry for service endpoint information

Here’s an example -- somewhat simplified and made abstract -- that illustrates some of the key

points about WSRR.

1. A developer creates a service implementation. Part of that is a WSDL file. The WSDL file is

published to WSRR.

2. WSRR stores the WSDL, but it also decomposes the WSDL and stores its constituent pieces

as well. This provides for relational queries on the elements, not just text searches through

XML files.

3. The service is deployed to its runtime environment. The person who does the deployment

also knows to update WSRR and provide the current status of the service: “Active” or

whatever terminology the designers have allowed for the states of the services.

4. An integration architect queries the WSRR to see what services are out there and what

capabilities they possess. This query can be against other “meta-data” that includes

descriptions of the service, but also queries against the service definition elements. The

integration architect determines that three other services could benefit from information

provided by this new service “Service A.” So the integration architect sets about updating

the services X, Y and Z so they use Service A as part of what they do behind the scenes.

The architect updates WSRR and provides it with information saying, in effect, “Service A is

now used by Services X, Y, and Z.”

So at this point the WSRR knows about the new service. It has all the information about that

service included in its registry and repository, including a decomposed WSDL that can be queried

at the element level. It has information about the status of the server (“Active”). And it has

information about users of the service.

Can you see that what’s happening here is there’s a “picture” of the environment being maintained

within a single, controlled and structured data store. Now imagine other tools being able to query

this and provide reports, graphical representations, statistics, etc.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-52

© 2007 IBM Corporation52 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Example of WMB access to WSRR …

Evolving Standards in this Space

The UDDI standard appears to be stabilized. It has limitations. Work is under-

way to define a broader industry standard. IBM is involved in that effort.

UDDI 1.0 UDDI 2.0 UDDI 3.0

2000 2002 2004

???

UDDI V3 has some meta-data capabilities, but its focus is
primarily WSDL. Its limitations are the reason why there

are proprietary extensions to UDDI in the market.

The UDDI Task Committee has
done no additional development

on UDDI in several years.

(Recent work has been technical
notes explaining how UDDI

works and how to use it)

A decision to close down the

task committee is pending.

Emerging work on a Web
Services standard for Service

Registry and Repository

WSRR

IBMIBMIBMIBM

IBM was heavily involved in
UDDI from the beginning.

IBM is heavily involved in the
development of the emerging

registry and repository
standards

Over time WSRR will merge
up with those standards

The inevitable question comes up -- “Why not just use UDDI?” The answer is: it could be … up to

a point. There are aspects of UDDI that are, apparently, a little short on flexibility to encompass all

the demands a full SOA may place upon it.

The history of UDDI is worth exploring. It came about back in 2000 and IBM was heavily involved

in its formation. The latest version, 3.0.2, was finalized back in 2004 and since then no new

development of the standard has taken place. What has happened is that some vendors have

constructed “extensions” to UDDI to overcome some of its limitations. But as of the writing of this

text, the UDDI task committee is not doing further development and there’s a decision pending to

close down the task committee.

That said, there is lots of activity around forming a new standard for a Service Registry and

Repository that seeks to address the limitations of UDDI and provide a platform for full SOA. IBM

is heavily involved in that as well. But the finalization of that is at least a year or more off. Rather

than wait, IBM has provided WSRR as a solution in this space.

The key here is to understand that as the new standard evolves and shapes up, WSRR will evolve

with it and take on more and more of the characteristics of the new standard. As we stated before,

IBM is a strong champion of open standards. There’s no reason to believe IBM won’t be for this

new standard.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-53

© 2007 IBM Corporation53 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Example: WMB Access to WSRR

Back to the “Big Picture” …

Two nodes are supplied with SupportPac IA9Q. One retrieves a WSDL file, the

other retrieves “meta-data” about any service defined in WSRR:

From the PDF that comes with the SupportPac

Hypothetical Flow

Non-SOAP
XML message

delivered over
MQ

Determine
request

requirements

WSRR

Use XSLT to
format service

request body

Web Service

Drive web
service

Deliver to
recipient

over JMS

Retrieve
Endpoint

“Only a WebService” … will grow over time into non-Web Service services

To give you an example of how a product can access and use the WSRR, there is a SupportPac

available for WebSphere Message Broker. It’s called IA9Q, and it’s available at the same

WebSphere MQ SupportPac website we mentioned a few charts back. Two nodes are supplied at

the present time, one retrieves a WSDL file, the other retrieves “meta data.”

Notice how the support is limited to “Web Services only.” WSRR is a relatively new product, and

other product support for this is an evolutionary thing. Web Services are likely to be the first kind of

service people programmatically make available, so there’s some justification in having the first

support that comes out be for Web Services. One can expect that over time the support should

expand to include other services.

So let’s look at a hypothetical Message Broker flow using this SupportPac:

Note: “hypothetical” because I’ve not actually built and run this flow. Essential concepts are correct; detailed
specifics may not be entirely present.

• The flow starts with an MQInput node, where the received message is non-SOAP XML.

• The Java Compute node examines the XML to determine what the request is seeking. One

element of the request is to be satisfied by driving a Web Service to get information prior to

driving the final service provider.

• The IA9Q “SRRetrievITService” node is used to query WSRR and get the endpoint

information.

• An XMLTransformation node is used to transform the original XML to what the service requires

• An HTTP Request node is used to drive the Web Service and get the information.

• The message is then delivered via JMS to the final service provider.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-54

© 2007 IBM Corporation54 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Where WSRR Fits in the Bigger Picture

WESB and WMB interoperability …

WSRR implements the “SOA Registry” function … one of the functions that
expands the broader concept of an Enterprise Service Bus

Enterprise Service Bus

SOA
Registry

Workflow
Engine

Service
Broker

Corporate Network

WebSphere
Service Registry
and Repository

WebSphere
Process Server

WebSphere
Message Broker

WebSphere Enterprise
Service Bus

CICS IMS DB2 MQ WAS Other
• SOAP
• JMS
• MQ

Service
Consumers

Service Providers

•JMS

•RMI

•JDBC

•SOAP

Firewall

Internet

Is WSRR a required piece of SOA or ESB? Strictly speaking, no. But it provides a
very important function of SOA/ESB. You could write your own. Or use this.

Here’s our original picture showing a physical/logical representation of an SOA. The WSRR

product fits above the ESB and is one of the key functions that extends the ESB. WSRR is not a

required piece of the puzzle … you can have an SOA or an ESB without using WSRR. But

eventually you’re going to need some kind of registry and repository. You could write your own,

but in the end you’d have something that looks and operates in a way similar to WSRR. So using

a pre-written product like this might save considerable time.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-55

© 2007 IBM Corporation55 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Interoperating Between WESB and Broker

The upcoming lab …

The two share a common bond -- Web Services over HTTP or JMS. Therefore,

they can interoperate. And you can build larger topologies:

WMB WMB

WESB WESB

WESB

SOAP/HTTP

SOAP/JMS

SOAP/HTTP
SOAP/JMS

SOAP/HTTP

SOAP/JMS

R

R

S

R

R S

S

R

R

R

WebSphere
Service Registry
and Repository

WebSphere
Process Server

The picture starts to come together:

• WESB for pure standards-based

• WMB for standards and non-standard
integration

• Construction of a larger bus

• WSRR providing service information

• WPS providing overall
“Choreography” of business
processes

We’ve already shown that WESB and WMB both fill the role of “an ESB,” and we’ve seen that

WMB is often referred to as the “Advanced ESB” because of its capabilities beyond the standard

Web Services arena. The two products do have an overlap of capabilities, and that common bond

-- Web Services over HTTP or JMS -- can be used to interoperate between the two. So what we

see is we can build out the ESB to span geographic locations or perhaps link different

organizational divisions together.

The picture above shows WMB acting as a kind of centralized hub for the broader ESB comprised

of WESB. That’s not a requirement … it’s just one suggested topology.

There is, of course, an enormous amount of technical details that would need to be fulfilled before

such a topology could be fully operational. Nowhere in this presentation am I suggesting this stuff

is pure magic. What this picture shows is how the product architecture permits a broader topology

to be created.

So we see the bigger picture coming together, as the bullet points illustrate.

We’ve not yet really talked about WPS. That’s the next unit in this workshop.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-56

© 2007 IBM Corporation56 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

The Upcoming Lab

Reference Resources …

Broker Toolkit MQBroker CICS

WBCSCUST

BAR

Deployed
Workflow

MQ

Web
Services
Interface

CICS Web
Services

Lab

(HTTP)

MQ

MQ

EXCI Req

EXCI Resp

Request
Message

Flow

Response
Message

Flow

RFHUTILC "Write Queue"

<Customer>

 <CustNo>3</CustNo>

</Customer>

<Name>John Smith</Name>

<Address>123 Maple</Address>

<City>Oak Grove</City>

<State>NY</State>

RFHUTILC "Read Queue"

BAR

DB2

AK "Alaska"

AL "Alabama"

 :

WY "Wyoming"

"Get State"

Q

C Q

CICS Q

Q

C Q

DB Q

Request Flow

Response Flow

Domain
Connection

D
e

p
lo

y
 B

A
R

We supply some custom ESQL code

This picture is a schematic of the lab we’ll do next. At the highest level, what this lab does is take

in non-SOAP XML, convert it to COMMAREA and drive a CICS application. The result is then

formatted back into XML, with a bit of data augmentation done with a Database node that fetches

the full state name from the abbreviation that’s returned from CICS … for example, AZ is

augmented to include the full name “Arizona.”

We’ll create the overall flow, which consists of two flows -- a request flow and a response flow -- in

the Broker Toolkit. It’s a long but not difficult point-and-click exercise. The result will be a BAR file,

which we’ll deploy into a running copy of WMB up on the z/OS system. Deployment occurs over a

“Domain Connection,” which is really a defined TCP link to WMB on z/OS. The flow uses a CICS

Request node to access CICS and drive the WBCSCUST application, which is the same

application you drove in the earlier lab using the CICS Web Services support.

We’ll invoke this flow by putting a very simple XML message onto an MQ queue. We’ll use the

IH03 rfhutilc utility to place the message on the queue. Broker will pick up the XML, parse it,

convert it to COMMAREA, drive CICS and then place the resulting data in COMMAREA format into

an intermediate queue. That’s the end of the request flow.

The response flow then takes over. It picks up the COMMAREA data out of the queue, converts

that to XML, then fetches the full name for the state that corresponds to the two-letter abbreviation

returned from CICS. It does this with a database node. The updated XML is then placed on the

output queue, which you’ll read back using the rfhutilc utility.

There is custom code in this mix. We’re going to supply you with some ESQL which will provide

the logic needed to build the COMMAREA data from received XML, and to format error and failure

messages should they occur.

ESB, WebSphere ESB and WebSphere Message Broker

Unit 3a-57

© 2007 IBM Corporation57 IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Resources for WebSphere Message Broker

WebSphere Message Broker Library:

http://www.ibm.com/software/integration/wbimessagebroker/library/

WebSphere Message Broker V6 Info Center:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp

WebSphere Message Broker SupportPacs:

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27007197#5

IBM Redbook – WebSphere Message Broker Basics :

http://www.redbooks.ibm.com/abstracts/sg247137.html?Open

WebSphere Message Broker – System Requirements :

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

More …

http://www.ibm.com/software/integration/wsrr/library/faqs.html#f1

FAQs

http://publib.boulder.ibm.com/infocenter/sr/v6r0/index.jsp
WSRR InfoCenter

Resources for WSRR

Reference material.

End of Unit

