
Web Services Support

Unit 2a-1

© 2007 IBM Corporation

Web Services Support on z/OS

Don Bagwell
IBM Washington Systems Center
dbagwell@us.ibm.com

Web Services Support

Unit 2a-2

© 2007 IBM Corporation2 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

This slide intentionally left blank

Web Services Support

Unit 2a-3

© 2007 IBM Corporation3 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Agenda of This Presentation

Web Services …

• Deeper Look at Web Services

Including a peek at the SOAP envelope, the WSDL file, and some background on various
Web Services standards

• WebSphere Application Server

See how that product supports Web Services, and how you can access data in backend
systems such as CICS, IMS and DB2 through a web service running in WebSphere.

� Hands on lab -- Simple Web Service deployment in WebSphere

• Exposing Existing Applications as Web Services

Leveraging your existing application base and making them available as a “service”

• CICS

• IMS

• DB2

� Hands on lab -- Exposing CICS application as Web Service

We’ll take a look at how each of these data systems supports the
configuration of a “front-end Web Services interface”

In this presentation we’re going to take a closer look at Web Services and specifically how it’s

supported on the z/OS platform. We’re going to go into three areas and have two hands-on labs.

• We’ll go deeper into what Web Services, including a peek inside an example of the SOAP

envelope. We’ll also take an overview look at the standards development going on in the Web

Services arena.

• We’ll look at how WebSphere Application Server supports Web Services. We’ll see how

WebSphere as a Web Services front-end to traditional data stores such as IMS, DB2 and CICS

is a very common way to expose existing data assets as Web Services. We’ll also have a

hands-on lab where you’ll create a Web Service and deploy it into WebSphere to access a CICS

application.

• Finally we’ll look at how you can “expose” existing applications as Web Services in three of

IBM’s key data subsystems: CICS, IMS and DB2. Then we’ll have a hands-on lab where you’ll

create a CICS web service using WebSphere Developer for zSeries (WD4Z).

Web Services Support

Unit 2a-4

© 2007 IBM Corporation4 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

A little deeper look at

Web Services

Web Services Support

Unit 2a-5

© 2007 IBM Corporation5 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Reminder of What a “Web Service” Is

The central role of XML …

A system designed to support program-to-program interaction over a network.
Its success is based on a deepening set of agreed-to standards:

Service
Requester

Request

Response

In
te

rf
a
c
e

Service Provider

HTTP

HTTP

WSDL

We introduced this picture before. It represents the logical
relationship between requestor, provider and UDDI, which
serves as a registry function

And we mentioned how most implementations employ
only the bottom portion of that picture, but not UDDI
(not to say UDDI is bad … it’s just under-utilized)

1

2

3

1. The function and format of the SOAP envelope
2. The function and format of the WSDL file
3. Some of the industry standards that help vendors know how to implement the interface

Again … what’s behind the
interface is not part of the
standard. That’s all hidden
by the standard interface.

We frame this dicussion by reminding ourselves what a “Web Service” is. It is a mechanism to

support program-to-program exchange of information, using standardized formats and

protocols.Those formats and protocols are based on an expanding set of agreed-upon standards.

The two basic pieces of the puzzle are the “Service Requester” (sometimes known as the

“consumer”) and the “Service Provider”. The requester asks the provider to supply some “service” --

typically in the form of a request for data. In the last unit we introduced the “three hexagon” chart

that is typically used to illustrate Web Services. That picture is a logical representation of the

relationship between the requester, producer and UDDI which serves as the registry function.

We noted earlier that in most cases UDDI is not used, so the picture is usually just the bottom two

hexagons.

We’ll now map onto that logical picture a more physical representation. We show a service

requester in the form of a computer program somewhere, and a service provider in the form of

something up on the z/OS platform. To understand the essentials, we need to dig into the following:

1.The function and the format of the SOAP envelope,which is the XML document passed between

the requester and the provider. The input values the service needs are supplied by the

requester and packaged in the XML file.

2.The function and format of the WSDL file, which is also XML and which supplies the necessary

information about the service to the requester so it knows how to format up its SOAP envelope

and knows where to send it.

3.The industry standards that are in place that allow vendors to know how to implement the Web

Services interface so it abides by the standards.

What’s behind the interface is not part of the standard. As long as the Web Service interface

adheres to the standard, then what takes place “behind the curtain” is not a concern to the requester.

Web Services Support

Unit 2a-6

© 2007 IBM Corporation6 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The Importance of XML in Web Services

The SOAP Envelope and HTTP …

You will see that XML is the common mechanism to exchange information in a
web services environment. What is XML, and why is it valuable?

<SOAP-ENV:Envelope>

<SOAP-ENV:Body>

<q0:DFHCOMMAREA>

<CustNo>3</CustNo>

</q0:DFHCOMMAREA>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A series of “tags” that mark the beginning and end of
blocks of XML

It holds both the data, as well as description of the data
<CustNo> provides an indicator of what the data is; “3” is the actual data.

It is both machine readable and human readable, which
makes things relatively easy to understand

Contrast with bit-format protocols, where bits within bytes meant certain
things. Machine readable yes; human readable less so.

Characters use “Unicode” encoding, which means it’s
universally understood

As opposed to the old EBCDIC vs. ASCII debates

Example of XML SOAP envelope
we’ll use in one of the labs

It can be “parsed”It is “Self Describing”

Something called a “Schema Definition” (XSD) is
used to tell a program what XML tags to expect.

The WSDL file (more in moment) has XSD
information

If a program knows what tags to
expect (the WSDL supplies this),

then the program can “parse”
(extract) information from the XML.

In the middle of this whole discussion is something called “XML,” which stands for “eXtensible

Markup Language.” It plays a central role in Web Services. Here’s what XML is and why it’s so

valuable:

• XML consists of a series of “tags,” delimited in brackets < and >, that mark the beginning and

end of data and blocks of data within a file. The example above is what we’ll use in the CICS
web service lab later. Look at the very center of that … you see <CustNo>3</CustNo>. That

digit 3 is the input to the Web Service we’ll create. The tag <CustNo> indicates what the data is

(a customer number). The “end tag” </CustNo> indicates the end of the data. The

<q0:DFHCOMMAREA> marks the beginning of the Web Service input data; the

</q0:DFHCOMMAREA> marks the end. In this example there is only one data input element --

<CustNo>, which a value of 3 supplied.

• The file is both machine-readable and human readable, which makes it much easier to work with

for us humans than a packed binary format would be. The files use Unicode encoding, which

means the requester and provider don’t need to coordinate on character encoding.

• XML is “self describing,” which means that computer programs can understand what XML tags

to expect by reading a separate file, called an schema definition file. That tells what tags to

expect, what kind of data will be included by each tag, which tags are required and which are

optional. When a program reads the XSD, it then knows what to expect when it reads the actual

XML. (The program of course needs to understand how to read the XSD … which is one aspect

of being a Web Service requester or provider.)

• The XML can be “parsed,” which means a computer program can sweep through and extract the

contained data by looking for the start and stop tags.

Let’s look a bit more closely at the SOAP envelope, which is XML, and HTTP, which is one transport

mechanism that can be used to send the XML from requester to provider.

Web Services Support

Unit 2a-7

© 2007 IBM Corporation7 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

“SOAP over HTTP”

The Web Service Description Language (WSDL) file …

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:q0="http://www.WBCSCUSTI.com/schemas/WBCSCUSTIInterface"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>

<q0:DFHCOMMAREA>

<CustNo>3</CustNo>

</q0:DFHCOMMAREA>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

You’ll frequently hear this phrase. What it’s referring to is the passing of an
XML document -- a SOAP “envelope” -- using the HTTP protocol

Web Service
Client

Web Service
Provider

HTTP Protocol
(TCP/IP Network)

XML File

The key is that the client program knew what the provider expected -- what data
elements and what XML tags to use. How did it know that? It had the WSDL file.

The SOAP input for our CICS lab

Knowing the layout is not that important to
us at this point

One of things you’ll hear frequently is the phrase “SOAP over HTTP.” And what that means is that

the standard request and response file format -- called SOAP (Standard Object Access Protocol).

The XML that makes up the SOAP envelope needs to be sent from requester to provider. At the

lowest level that goes over an IP network, but higher up in the protocol stack HTTP is frequently

used to carry the XML. HTTP -- Hyper Text Transfer Protocol -- is the same protocol we all use to

browse websites.

The layout of the SOAP envelope is an agreed-to standard, and both requester and provider must

understand what it is and how to read it. Inside of the SOAP envelope is the input parameters the

requester sends to the service. In our example it’s the integer “3”, which is the customer number.

Knowing the exact layout of the SOAP envelope is not really important to us. What is important is

that we know what a “SOAP envelope” is (an XML document); we understand that it is an industry

standard format; and we understand that it’s what goes back and forth between a Web Service

requester and provider.

You can well imagine how difficult it would be to have a services architecture be widely adopted if

requesters had no idea how to form up the basic unit of exchange with the provider. By defining a

standard exchange format -- the SOAP envelope -- it facilitates a wider acceptance of Web Services.

Now let’s look at the WSDL file -- the “Web Services Definition Language” file …

Web Services Support

Unit 2a-8

© 2007 IBM Corporation8 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The WSDL File

Where does WSDL come from? …

WSDL contains information about the service -- where it’s located, what
parameters it takes as input, what it gives back as output, what XML tags to
use, etc. It is sometimes known as a “bindings file”.
It can be long and complicated … what follows is a boiled-down snippet to show essence

<SOAP-ENV:Body>

<q0:DFHCOMMAREA>

<CustNo>3</CustNo>

</q0:DFHCOMMAREA>

</SOAP-ENV:Body>

Web Service
Client

<complexType name="DFHCOMMAREA">

<sequence>

<element name="CustNo">

<simpleType>

<restriction base="int"/>

</simpleType>

</element>

</sequence>

</complexType>

<wsdl:service name="WBCSCUSService">

<wsdl:port binding="tns:WBCSCUSBinding" name="WBCSCUSPort">

<soap:address location="http://mig.null.washington.ibm.com:12301/WBCSCUST"/>

</wsdl:port>

</wsdl:service>

What service will return was here … removed to save space

Web Service
Provider

Client knows input XML and
data requirements based on this

Client knows where service
is located based on this

We have mentioned serveral times how important it is that the request know not only that a service

exists, but also where that service is located, what that service’s input requirments are, what can be

expected in return. To provide that information the Web Services standard defines something called

the WSDL file … Web Services Definition Language … which contains information about the service

offered. The WSDL file uses XML, and is in Unicode encoding.

The example above is a shortened version of an actual WSDL file. It can be somewhat long and

complicated. What’s shown above is just a snippet.

In the upper portion of that example we see that the WSDL file is defining the input requirements of

the offered service. The “complexType” is the set of input parameters defined by the service

program. In this case the name is DFHCOMMAREA. (We’re using as an example the WSDL

created by WD4Z for the CICS Web Services lab we’ll do in a bit.) This service has one input
parameter -- CustNo. If it had three, for example, we’d see three <element> tags within the

<complexType> block. But as it is we see only one <element>, and that’s for “CustNo.”

What kind of data is “CustNo”? We see that it’s defined as an integer. So using this, the service

requester knows that one input parameter is expected (“CustNo”) and that it’s an integer.

Note: a bit later we’ll show how the WSDL also contains what the requester can expect in return.

We didn’t show it here because the chart would get too busy.

How about where to send the request? That’s later in the WSDL. There we see the host and port

where the service is located. We also see the “context root” of the service -- the text that follows the

host and port and identifies which service is to be invoked.

The requester program reads this WSDL file to understand what the service expects, what can be

expected in return and where the service is located and how it’s invoked. But where does the WSDL

file come from? That’s next.

Web Services Support

Unit 2a-9

© 2007 IBM Corporation9 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WSDL File is a Product of Development Tool

Revisit role of UDDI …

You could hand-code the WSDL. More likely you’ll use a development tool to
create the web service, and that tool will produce the WSDL.

Web Service
Client

Web Service
ProviderService Program

WSDL File

• Rational Application Developer

• WebSphere Developer for zSeries

• Other Development Tools

With WSDL, client
knows where service
is and how to drive it

With only one service and one client, this is easy.

What about a hundred difference services and a thousand clients?

The WSDL file doesn’t magically appear. Something needs to create it. That something is typically

the development program used to create the web service itself. For IBM, that development tool is

increasingly coming to mean an “Eclipse” based tool, such as Rational Application Developer (RAD)

or WebSphere Developer for zSeries (WD4Z). As part of the process of creating the code that

implements the interface for the service, a WSDL file is also created. So what’s required is for that

WSDL file to be made available to the web service client so it can know how to form up its request

SOAP envelope and where to send it to.

With only a handful of services and requesters, it’s relatively easy to manage the manual process of

making this file available to Web Service requesters. But when the number of services and

requesters increases then the task becomes much more complicated. Ultimately some kind of

“registry” is needed -- a place where service requesters can go get the most current WSDL file for a

given service. With that we’ll revisit the role of UDDI.

Web Services Support

Unit 2a-10

© 2007 IBM Corporation10 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

UDDI, Revisited

The need for a registry …

UDDI is a server that acts as a registry for information about services that are
available. Clients query the UDDI server and receive the requested service’s
WSDL and perhaps other information

This illustrates the role of a “registry.” We saw
earlier how a registry plays a key role in SOA

We’ll talk about IBM’s SOA registry more later
WebSphere Service Registry and Repository -- WSRR

Web Service
Client

Web Service
Provider

Program

WSDL File

Q
u
er

y
fo

r
S

er
vi

ce

R
ec

ei
ve

 W
S

D
L
 B

ac
k

Now we go back ot the “three hexagon” picture and show why UDDI was part of that picture in the

first place. The WSDL file is still produced by the development tool that develops the service itself.

But rather than manually make it available to the requester, the WSDL file is “published” to the UDDI

server. The UDDI server is a registry that can be queried and browsed, and the WSDL files

contained there can be retrieved programmatically. The requester would go to the UDDI server,

query for the WSDL based on the service name, get the most current WSDL back, and with that in

hand it could then read it to determine the location and requirements of the service.

This concept of a registry is going to be a key part of SOA. IBM’s SOA registry is called the

WebSphere Services Registry and Repository (WSRR), which we’ll cover in a bit more detail later.

Web Services Support

Unit 2a-11

© 2007 IBM Corporation11 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The Need for a Registry Grows as Services Grow

The SOAP envelope the service returns …

Up to recently, most people used a small handful of services, and maintaining
the “static binding” between client and service wasn’t hard.

But the long range vision we’re painting here is much bigger … maintaining static
binding would quickly become a limiting factor in your SOA. Need a registry:

Service
Requester

Service
Requester

Service
Requester

Service
Requester

Service
Provider

Service
Provider

Service
Provider

Service
Provider

Enterprise Service Bus
SOA

Registry

Similar in concept to
UDDI, but with more

capabilities

With only a handful of service providers and requesters, the need for a registry is relatively low. But

as the number grows, then coordinating WSDL files gets to be more and more of a burden. The

picture at the top shows an example of only two requesters and three services. If the first client

needed access to all three services, then it would need all three WSDL files. If the second client

needed access to only two, then it would need only two WSDL. Relatively simple.

But expand the picture to hundreds of requesters and hundreds of services. The numbers grow

large very quickly. And thus a registry becomes increasingly important. That was the original intent

behind UDDI, and the need is still there with SOA. The IBM SOA registry -- WebSphere Services

Registry and Repository -- is similar in concept to UDDI but offers more. You can consider it like a

superset of UDDI.

Now let’s cycle back to the SOAP envelope and show the results of the service invocation we

illustrated earlier.

Web Services Support

Unit 2a-12

© 2007 IBM Corporation12 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The SOAP Response

Not just HTTP … JMS as well …

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:q0="http://www.WBCSCUSTI.com/schemas/WBCSCUSTIInterface"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>

<cbl:DFHCOMMAREA xmlns:cbl="http://www.WBCSCUSTO.com/schemas/WBCSCUSTOInterface">

<CustNo>3</CustNo>

<LastName>Fox</LastName>

<FirstName>Vicente</FirstName>

<Address1>Calle de Presidente</Address1>

<City>Dusty City</City>

<State>NM</State>

<Country>USA</Country>

<RetCode>1</RetCode>

</cbl:DFHCOMMAREA>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Let’s complete the picture

Web Service
Client

Web Service
Provider

HTTP Protocol
(TCP/IP Network)

XML File

Client knows what to expect because client has WSDL
file, which has information about returned information

This service took an integer input and returned the
associated address related to that number

We’ll do this very thing in the CICS lab

Client may now strip return information out of XML and
use it as it needs

Let’s complete the picture. We showed the SOAP envelope used for our request. Now let’s look at

the SOAP envelope we’d get back.

Note: this is taken from the actual we’ll see in the CICS Web Services lab.

The application itself took a single input (“CustNo”) and is designed to return back the full address.
We saw earlier how the input SOAP envelope contained the single input held between <CustNo>

and </CustNo> . The response comes back as eight values -- the customer number, the last

name, first name, address, etc.

How does the requester know that it’s going to get back those eight and know what the XML tags are

that delimit each? Based on what it saw in the WSDL file. Thus we see once again the importance

of the WSDL file -- as a means of describing the service being offered -- and we see once again the

eventual importance of a registry where service descriptions will be housed.

With the response information housed in XML, and with the requester understanding what XML tags

refer to what bits of information, it can now strip the key data out of the XML and use it as it needs to.

The cycle is complete: a requester invokes a remote service; the service packages up the response

and sends it back. The requester uses the information it received.

Web Services Support

Unit 2a-13

© 2007 IBM Corporation13 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

SOAP Over JMS Also Permitted

The need for standards …

JMS stands for “Java Message Service” -- a Java specification for the interface
to a messaging system. (In concept a lot like MQ)

Web
Service
Client

Java Application

Standard set of messaging APIs --
the JMS specification

Java Application

Standard set of messaging APIs --
the JMS specification

Vendor implementation of messaging infrastructure
(JMS specification does not concern itself with this)

Web
Service
Provider

This is the same SOAP format
as before … it’s just not

packaged in an HTTP flow

This concept of SOAP over a messaging
infrastructure plays a big role within the

ESB products (WESB, WMB)

We’ve used HTTP as an example of the transport medium over which the SOAP envelope would be

sent. But that’s not the only transport medium. Another defined in the Web Services standard is

JMS -- Java Message Service.” JMS is a definition for the interface to a messaging system. If

you’re familiar with MQ, this is going to look very familiar to you.

The concept behind a messaging infrastructure is that applications will send information back and

forth not across a real-time connection, but across a system that accepts a message and stores it in

some centralized queue, then the receiver pulls the message off the queue. The elegance of this is

that it means the requester and provider do not need to be active at the same time. The requester

can send its request at any time, and the provider can pull the message when it comes back online.

This kind of messaging is often referred to as asynchronous communications because it does not

require a coordinated handshake between sender and receiver.

We say that JMS is an interface standard because the standard does not say how the messaging

infrastructure under the covers is supposed to be implemented. All it says is that an API set be

available, and however a vendor wishes to implement the nuts and bolts behind the interface is fine.

One way IBM implements the messaging behind the JMS interface is to put the real WebSphere MQ

back there. Another way is what WebSphere Application Server provides -- a pure Java

implementation of a messaging infrastructure. That’s sometimes called “platform messaging,” which

is meant to convey that the messaging is performed by the platform itself and not another system

like MQ.

Key Point: this is just the transport under the covers. All the other stuff we told you about WSDL

files and SOAP and such stays the same. What changes is the definition of where the service is

located. With HTTP it’s in the form of a host/port combination and a URL; with JMS it’s in the form of

something called a “destination,” which is a fancy name for “queue.”

Web Services Support

Unit 2a-14

© 2007 IBM Corporation14 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Without Standards None of This Would Be Possible

Web services standards …

More and more we operate in a world where agreed-to standards are what
allow interoperability and enable our systems to work.

Internet

Ethernet

Router

Web
Service
Provider

Router

WSDL

SOAP
XML

IEEE
802.xx

DHCP

TCP/IP

OSPF

HTTP

Web Service
Provider

And standards are used nearly everywhere

… not just for Web Services:

JDBC
JCA

J2EE, J2SE

This picture shows a few of the Web
Services standards we’ve mentioned

earlier (WSDL, SOAP)

But there’s a lot more standards
development work going on in

the Web Services space

What holds this world of Web Services together is a set of agreed-to standards on things like the

layout of the SOAP envelope, and the format of the WSDL file, and many other standards. The need

for standards, and the proof that standards can work in the broader world, should be evident. We

use standards every day for our most mundane things:

• Your PC communicates using one form of the 802.xx standard -- either 802.2 for wired Ethernet,

or 802.11 for wireless.

• When you get an IP address it’s issued up by a DHCP server. Another industry standard.

• Router to router communications are handled with something called OSPF.

• Of course the Internet is based on the mother of all standards, TCP/IP.

• We mentioned HTTP before -- that’s a standard

• The acronyms you may be familiar with when working with WebSphere -- J2EE, J2SE, JDBC

and JCA -- all are standards.

• And of course SOAP and WSDL.

• And there’s more … many more not shown on this chart.

There’s a risk of thinking that SOAP and WSDL are the only standards related to Web Services, but

that would be incorrect. There is in fact a wide variety of standards work underway for Web

Services. Let’s look at the scope of work underway.

Web Services Support

Unit 2a-15

© 2007 IBM Corporation15 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Web Services Standards

The architectural model …

There are two primary standards bodies at work developing web services
standards – W3C and OASIS:

www.w3c.org

Description WSDL
Messaging SOAP
Publishing UDDI
Discovery UDDI

www.oasis-open.org

Security WS-Security
Transactions WS-Transaction
Reliability WS-ReliableMessaging
Business Process WS-BPEL
Management WS-DistributedManagement

IBM is heavily involved in both

First, you should understand there are two primary standards bodies at work developing the Web

Services standards -- W3C and OASIS. You can think of W3C doing work on the “lower level” of the

architecture, and OASIS doing work on the higher levels.

You should also be aware that IBM is heavily involved in both, and is making significant contributions

to both.

To see the scope of what they’re doing, we need to look at an architectural map.

Web Services Support

Unit 2a-16

© 2007 IBM Corporation16 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The Web Services Architectural Model

Standards summary …

The following picture illustrates the architectural layout of the standards:

Picture from: www.ibm.com/developerworks/webservices/standards/

Primarily HTTP, but a
new standard called
“BEEP” is emerging

SOAP, plus quite a few
others for more advanced,

detailed things

UDDI and WSDL,
plus a list of other

Standards to assure the reliability of
delivered messages:

• Web Services Reliable Messaging
• WS-RM Policy Assertion

• Web Services Atomic Transaction
• Web Services Business Activity
• Web Services Coordination

BPEL – Business
Process Execution

Language

A whole list of
specifications ...

more in a bit

“Management”
hidden under here

The pictures we presented earlier might leave one thinking Web Services is a simple “send a file,

receive a response” type thing. But in fact its much more. The architectural picture shown above

illustrates that Web Services is being seen as nothing less than a full-stack model, from the low level

transports to the higher level business process and systems management level.

The URL at the top of the page is a pointer to an IBM “DeveloperWorks” page that describes in much

more detail the standards work behind each of the boxes on that chart.

Web Services Support

Unit 2a-17

© 2007 IBM Corporation17 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Being a Web Services Provider

WebSphere Application Server …

Some fundamental things …

Web Services
Provider

Ability to take in (or somehow receive)
the SOAP request

Standard ways: SOAP/HTTP or SOAP/JMS

Ability to read and understand the
contents of the SOAP request

XML parser along with implementation of the
“WS-basic” standards

Ability to act upon the request

This is the “behind the interface”
implementation we’ve shown before

With that we now prepare to show how some of IBM’s key product
systems support being a Web Services provider

WebSphere Application Server, CICS, IMS and DB2
(WebSphere Message Broker, WebSphere Enterprise Service Bus and WebSphere Process Server come later)

Up to now we’ve simply alluded to something acting as a Web Services provider. Let’s now explore

what it takes to be a provider, which will then set the stage for our exploration of how key IBM

systems such as WebSphere Application Server, CICS, IMS and DB2 act in this role.

The key things are:

• The ability to take in a SOAP envelope. A server box sitting alone without network connectivity

won’t make a very good Web Services provider. Neither will a system that can’t communicate

via HTTP or JMS.

• It needs to have a way to read and understand SOAP. That means it has to be able to “parse”

XML (read through and separate tags from data). These first two bullets are part of the “WS-

Basic” standard -- the basic things something must possess to play in the Web Services arena.

• Finally, there has to be something behind the interface … something that will act upon the

request and satisfy the requester. This does not need to be a standard implementation.

Remember, the key is a standardized interface. What’s behind the interface is left up to the

vendor.

Web Services Support

Unit 2a-18

© 2007 IBM Corporation18 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Web Services and

WebSphere Application Server
for z/OS

Web Services Support

Unit 2a-19

© 2007 IBM Corporation19 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The Purpose of an “Application Server”

Survey of standards supported …

An "application server" provides a common and standard set of services that
applications can use. Developers can focus on their business logic and not
have to "reinvent the wheel" basic stuff.

Application Server

Service Service Service Service Service

Operating System Platform

Application Application Application

The concept is not new … CICS is also an “application server” and has been
around for almost 30 years! The difference is industry standards …

Application Developer
responsible for this

Vendor responsible for this

Security
Transaction
Deployment
Logging
Management
etc.

WebSphere Application Server is … wait for it … an application server. But what does that mean? It

means that it implements a series of common and standard services that applications can make use

of, rather than having developers write the same stuff over and over again. That allows developers

to stay focused on the business needs and pay less attention to the the “plumbing” of a solution.

Examples of the “services” offered include security services, transaction services, logging services,

connection services, etc.

WebSphere Application Server implements the J2EE specification to provide these services.

WebSphere provides a great many industry standards as part of its overall platform.

This concept of providing an “application server” is not new. CICS is an example of an application

server. The difference is that CICS started life in an era when industry standards didn’t generally

exist. So it was developed using proprietary mechanisms. It worked wonderfully … CICS has been

an astonishingly successful application server and transaction manager.

Note: Be careful … CICS now supports many industry standards, including Java and Web Services.

The point about proprietary mechanisms was more about its origins rather than its present-day.

We’ll next explore the industry standards supported by WebSphere Application Server.

Web Services Support

Unit 2a-20

© 2007 IBM Corporation20 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WebSphere Specifications and APIs

The new Feature Pack …

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=

/com.ibm.websphere.zseries.doc/info/zseries/ae/rovr_specs.html

The following URL provides a summarization of the specifications and APIs
WebSphere Application Server for z/OS Version 6.1 supports:

• Java 2 Platform, Enterprise Edition (J2EE) specification -- 1.4
• Java 2 Standard Edition (J2SE) specification -- 5
• Java Servlet -- 2.3 and 2.4
• Java Server Page JSP -- 2.0
• Enterprise Java Bean EJB -- 2.0 and 2.1
• Java Message Service JMS -- 1.1
• SOAP -- 1.1
• WS-I Basic Profile WS-I Basic Profile -- 1.1
• Web Services Description Language (WSDL) -- 1.1
• Web Services Resource Framework (WSRF) WSRF -- 1.2
• WS-I Attachments -- 1.0
• Universal Description, Discovery and Integration UDDI -- 3.0
• WS-Addressing -- 1.0
• Web Services Atomic Transaction WS-AT -- 1.0
• Web Services Business Activity WS-BA -- 1.0
• Web Services Coordination WS-COOR -- 1.0
• Web Services Notification -- 1.3
• Web Services Security -- 1.0
• Web Services Reliable Messaging -- 1.1
• more

Message is that IBM is
heavily committed to
open standards and

WebSphere is an
standard platform

Web Services is a big
part of the WebSphere

message

Not all standards supported are on
this chart. Check the URL.

WebSphere Application Server is intended to be an open-standard platform. As such, it is frequently

updated with the latests standards. The chart above shows some of the standards that are

incorporated into WebSphere Application Server for z/OS Version 6.1.

Note: the chart is not exhaustive. It is a sampling. See the URL listed at the top of the chart for a

better list of the supported standards.

The block highlighted in gray are those related to Web Services. Many of the standards we touched

on in the previous discussion of W3C and Oasis are shown here. The message is that IBM is

committed to open standards and WebSphere is one product that is implementing them in an

aggressive fashion.

Of all the systems we’re talking about in this section (WebSphere, CICS, IMS and DB2), WebSphere

is perhaps the most robust in terms of its Web Services support.

In June of 2007 IBM released the “Feature Pack for Web Services” which took the Web Services

support even further …

Web Services Support

Unit 2a-21

© 2007 IBM Corporation21 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

New - Feature Pack for Web Services

Implemented as MVS started tasks …

• Web Services Reliable Messaging (WS-RM)

• Web Services Addressing (WS-Addressing)

• SOAP Message Transmission Optimization Mechanism (MTOM)

• Web Services Secure Conversations (WS-SC)

• New standards-based programming model support:

• Java API for XML Web Services (JAX-WS 2.0)

• Java Architecture for XML Binding (JAXB 2.0)

• SOAP with Attachments API for Java (SAAJ 1.3)

• Streaming API for XML (StAX 1.0)

“Feature Packs” are a way to provide net new function and allow customers
to pick and choose what they wish to implement.
Compare to other method: including new function in maintenance stream

Made GA for WebSphere z/OS on 6/29/2007:

Message: as standards advance, IBM
continues to incorporate into products

White Paper: ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101084

At the end of June, 2007, IBM made available something called the “Feature Pack for Web Services”

for WebSphere Application Server for z/OS. “Feature Packs” are a way for IBM to deliver new

functionality for a product and allowing customers to pick and choose what they want, based on their

needs. In the past all new function was delivered in the form of maintenance releases or new

release or versions.

The Feature Pack for Web Services just released provides quite a bit of additional web services

support. As we stated earlier, the world of industry standards is an evolving one, with new standards

coming out all the time, and existing standards being advanced. IBM, as stated, is committed to

open standards and implements chosen standards on an on-going basis.

Web Services Support

Unit 2a-22

© 2007 IBM Corporation22 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Implementing the Agreed-To Standards

Simply run on z/OS, or exploit z/OS …

The standards say what the interfaces and functions should be, not how
vendors implement them behind the scenes.

CR SR

AppServer

CR

Node Agnt

CR

Daemon

CR SR

DMGR

MVS System Image

CR SR

AppServer

CR SR

AppServer

Implemented on z/OS as a series of started tasks

Configured and built by submitted JCL batch jobs

Started and stopped like any other started task

There's more to it, of course. But the
message is that your MVS knowledge is
quite applicable to this environment

The people who developed WebSphere for z/OS had to find a way to implement the industry

standards described for a J2EE server, and do so on the z/OS operating system. They chose to do

this by using a series of MVS started tasks to represent the different server types that comprise

what’s called the “cell” -- which is a fancy term to mean the sum of all the servers over which the

administrative application has control.

These started tasks are started and stopped like any other started task. The whole environment is

built on z/OS by submitting a sequence of batch JCL jobs that construct the configuration HFS that

houses all the information about the cell.

Our reason for showing this chart is to lend comfort to any MVS systems programmers who may

wonder whether their exising skills can map to WebSphere. The message is they can for the most

part.

There’s much more to this, of course, and to find out more about WebSphere Application Server for

z/OS you should attend the workshops listed at the start of this section.

WebSphere for z/OS runs on z/OS, but also exploits z/OS. That’s an important distinction. More

next.

Web Services Support

Unit 2a-23

© 2007 IBM Corporation23 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WebSphere for z/OS is … z/OS Aware!

WebSphere and inbound HTTP …

While WebSphere for z/OS has many elements common with the other
platforms, it does exploit underlying z/OS and Parallel Sysplex strengths:

Parallel Sysplex – CF for log, DB2 data sharing, DVIPA, Sysplex Distributor

WLM – multiple servant regions based on goals; internal IIOP routing based
on WLM metrics

SAF – security database for authentication, resource access, started task
identities, keyrings and certificates

zAAP Engines – z/OS JDK can exploit the zAAP engines for Java processing

TCP -- Reduced TCP code path if communication within MVS image; use of
XCF if communicating between members of Sysplex

Use of XCF or Hipersockets for internal communications

Value of close proximity to data resources (cross-memory communications)

WebSphere Application Server for z/OS has most of its capabilities in common with WebSphere on

other platforms. That’s a good strategy … it means that someone familiar with WebSphere on

distributed can carry a large part of that skill up to the z/OS platform.

But we should note that the code is not entirely the same. If that were the case, then WebSphere

would merely run on z/OS and not exploit it. But in fact there is a degree of exploitation, both direct

and indirect. For example, the fact that DB2 can operate in a shared data configuration in a Sysplex,

and WebSphere can take advantage of that for high availability configurations … that’s an indirect

exploitation of z/OS. The fact that a great deal of WebSphere’s internal communications routing is

done based on knowledge of the environment from WLM is an example of direct exploitation.

In either case, the point is that WebSphere on z/OS can exploit the inherent strengths of the z/OS

platform.

Web Services Support

Unit 2a-24

© 2007 IBM Corporation24 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WebSphere: A Natural HTTP Handler

Once into the server’s HTTP handler, then web service code can be invoked …

The way WebSphere Application Server is architected, each of the application
servers has its own HTTP listener:

MVS System or LPAR

DMGR

CR SRA

Daemon

CR

Server_A

CR SR

Server_B

CR SR

Server_C

CR SR

Node Agent

CR

"HTTP Front-End
Traffic Handler"

The whole J2EE thing was an extension of J2SE,
which was the original “servlet/JSP” design. That

was largely an HTTP, browser based design.

So WebSphere Application Server has a robust
HTTP handling infrastructure
(a robust message handling as well)

This makes it a “natural” for Web Services

Most production designs have a “front-end” handler --
a request distribution device. It’s a fascinating topic,

but beyond the scope of this presentation

WebSphere is architected so that each application server has its own HTTP listener ports. What that

means is that in most implementations there’s some kind of IP “sprayer” out front that handles the

initial inbound flow, then routes it to the backend. But that’s not really the point of this chart. The

point of this chart is that WebSphere has a very robust HTTP handling infrastructure. And we

learned earlier that a common way to flow Web Services is over HTTP. Therefore, WebSphere has

a natural affinity to doing Web Services. All that remains is the code in WebSphere to support Web

Services. And we saw on an earlier chart that WebSphere supports a wide array of Web Services

standards.

The key the is getting the “SOAP over HTTP” flow into WebSphere, then the web services code can

take over.

Web Services Support

Unit 2a-25

© 2007 IBM Corporation25 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Web Service Inside of WebSphere Application Server

Some examples …

Is implemented as a Java program -- EJB or Javabean. The interface provides
the standard Web Service features; the rest may do whatever you wish to
provide the service. And with WebSphere, many options exist:

Application Server

Standard Web
Service interface

Implemention
of the service

JDBC

JCA

JMS / MQ

HTTP / SOAP

RMI/IIOP

DB2, Oracle, etc.

CICS, IMS, SAP, etc.

Any message based resource

A website, or another web service

EJB

Web
Service
Client

Two key points:

1. WebSphere Application Server can access a wide range of resources on z/OS

2. When WebSphere and the resources are both on z/OS, you can benefit from close proximity
Cross memory speed; reduced TCP processing; potential reduced security complexity

We mentioned how WebSphere is an excellent and natura HTTP handler. That means it can host a

Web Service. That service will be written in Java as an EJB or a Javabean. It will provide the

interface for the service. The implementation of the service -- what does the actual work -- is

whatever you create behind the interface.

That implementation has available to it all the resources WebSphere Application Server itself

provides. This includes the full range of “data connector” technologies that permit access to data

outside of WebSphere Application Server. The chart above shows you what those include.

The final point listed on the chart above is one that should be noted. If the data resource and the

WebSphere Application Server web service is co-located on the same MVS image, there are

benefits related to that proximity. In many cases cross-memory speed can be realized accessing the

data. Or, if the connection is TCP, then a reduced code-path TCP connection service can be used

that greatly speeds up communications.

Web Services Support

Unit 2a-26

© 2007 IBM Corporation26 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Two Examples of Leveraging Existing Assets

Power of Parallel Sysplex …

Application Server CICS

CICS
Program

EXCI
Web

Service
Client

Using the CICS JCA
adapter to access CICS

Application Server

Web
Service
Client

Whatever
resources the
EJB accesses

EJB

Servlet

Using RMI/IIOP to
access existing EJB

HTML/HTTP

SOAP/HTTP

Leveraging
existing

CICS tran

Leveraging
existing

J2EE EJB

Many other combinations exist

Here are two examples of leveraging existing assets using a Web Service hosted by WebSphere

Application Server. There are many examples beyond this as you’ll see.

The first example shows the Web Service hosted by WebSphere, with the use of the CICS

Transaction Gateway JCA adapter to access CICS. The “existing asset” is a CICS transaction

program. The implementation of the Web Service would receive the SOAP request, strip out the

input information, then turn and drive CICS through the EXCI interface.

Note: there are ways to host a Web Service directly inside of CICS, eliminating WebSphere

Application Server from this equation. We’ll see that in a bit.

The second examples shows an existing EJB application that you wish to expose as a Web Service.

Let’s say today you have some access to this EJB asset through a browser, where a front-end

servlet acts as the interface between the user (a human at a browser) and the EJB. Here you can

code up the Web Service interface, and the implementation of the Web Service can turn and drive

the EJB using RMI. Now you’ve implemented a program-to-program Web Service while maintaining

the existing browser interface and re-using the existing asset.

Web Services Support

Unit 2a-27

© 2007 IBM Corporation27 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

A Highly Available Web Service

WebSphere as foundation for other solutions …

WebSphere on top of Parallel Sysplex offers some unique advantages:

DB2

CICSPlex

MVS Image

AppServer

DB2

CICSPlex

MVS Image

CF

T
C

P
T

C
P

DVIPA

Sysplex
Distributor

Web
Service
Client

WebSphere
Cluster

AppServer

1

2

3

Parallel Sysplex
itself has some
inherent HA
capabilities,
including (but not
limited to) DB2
data sharing and
clustered CICS

A WebSphere cluster is a logical grouping of two or more
servers. Applications are duplicated in each server of the

cluster. WebSphere treats as a logical “one”

DVIPA -- distributed virtual
IP address -- the ability to
host an IP address on an
adapter and have it
immediately move to
another adapter if the first
fails

Sysplex Distributor -- an
intelligent load balancing
mechanism that uses WLM
metrics to know which
address space is best able
to service request

Once again we cycle back to how the power of the System z platform can be exploited by the Web

Service infrastructure that runs on top of it. In this case, we’re focusing on how WebSphere

Application Server can take advantage through its clustering capabilities.

This picture is a bit complex. But the underlying message is quite elegant.

• WebSphere Application Server itself has the ability to cluster its servers. The Web Service

would run as an application in a server, and if it was a cluster then the Web Service would

actually run concurrently in multiple locations, ideally on different MVS images.

• Behind the WebSphere cluster you have the advantage of Parallel Sysplex. That brings the data

sharing capabilities inherent in that, which includes things like DB2 data sharing, MQ shared

queues and CICSPlex. If your Web Service accesses a backend data store that can take

advantage of shared data, then the clustered service combined with the shared data provides a

powerful high-availability story.

• In front of the WebSphere cluster you again have the power of Parallel Sysplex, this time in the

form of Sysplex Distributor and DVIPA. That provides a way to intelligently balance the

incoming requests across the clustered servers, and in the event of an outage that removes the

hosting IP adapter, the address can be immediately re-hosted.

When people speak of System z’s ability to “always be up,” they’re referring to the ability to configure

Parallel Sysplex in a way that provides for things to “always be up,” even if a piece of the system

goes down, either because of failure or because of scheduled maintenance.

Web Services Support

Unit 2a-28

© 2007 IBM Corporation28 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WebSphere Application Server as “Foundation” for Other Function

Detour into tooling …

We’ve made this point before … we’ll make it again: WebSphere Application
Server is increasingly being used as a “foundation” for other functionality:

WebSphere
Process Server

(WPS)

WESB

WebSphere
Enterprise Service Bus

(WESB)

WebSphere
Service Registry and Repository

(WSRR)

WebSphere
Extended Deployment

WebSphere Application Server for z/OS
(J2EE framework, Service Integration Bus, Standards compliance and support)

SDK supplied with WebSphere for z/OS
(V6.0.2 – SDK 1.4.2 / V6.1 – SDK 1.5)

z/OS
(zAAP, WLM, Parallel Sysplex, Sysplex Distributor, SAF …)

DB2
CICS
IMS
MQ
Broker
Web Services
HTTP
JMS
:

Makes good sense – WebSphere is a proven platform. Why not re-use the function by
building on top, rather than gutting WebSphere function and baking it into each product?
Avoids separate maintenance streams, functional drift over time, etc.

Separate
FMIDs

IBM is making extensive use of WebSphere Application Server as a foundation for other solutions.

These other solutions require the kind of thing WebSphere Application Server provides -- a fully

compliant J2EE environment with a rich framework for management and access to external data

resources. IBM could seek to gut the function out of WebSphere and incorporate it as part of these

products, but that introduces a whole slew of other complications, most notably related to

maintaining consistent function and managing maintenance streams. It makes a lot more sense to

simply pre-req the Application Server base and build on that with the additional function.

Now onto some brief comments about the tooling, then onto the first lab.

Web Services Support

Unit 2a-29

© 2007 IBM Corporation29 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

A short detour into

Eclipse and Tooling

Web Services Support

Unit 2a-30

© 2007 IBM Corporation30 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Basic Concept Behind Use of Workstation-Based Tooling

The role of “Eclipse” …

Use the graphical nature of workstation tool to generate code based on
settings, options and layouts you specify:

Creation
Wizards

Specialized
object
editors

Graphical layout
creation editors

(Broker Toolkit
Message Flow

illustrated here)

Development Aritfacts Runtime Environment

If you’re already familiar with workstation tooling, this will be nothing new. But if you’re not, then the

basic concept behind the tooling is to provide various development aids -- wizards, object properties

editors, graphical layouts -- to speed the development of the final code. Ultimately what gets

generated is code, either Java or some other programming language. But rather than offering a

simple editor and making the developer know all the syntax and calls, most of that is hidden behind a

set of things like we’re showing here.

And of course, when the development artifacts are created, they are then deployed to the runtime

environment. That runtime environment could be CICS, WebSphere Application Server, or one of

the ESB products we’ve mentioned and will discuss in more details in the next unit.

Underlying IBM’s tooling is something called “Eclipse,” which is a tool framework on which most of

IBM’s tooling now runs.

Web Services Support

Unit 2a-31

© 2007 IBM Corporation31 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Eclipse-based Tooling

What tools do what things …

Eclipse is an open-source community organization that provides the tooling
base used by IBM. IBM is very involved with the Eclipse organization.
www.eclipse.org

Addtional function added by adding to the Eclipse foundation

Eclipse Foundation Code

J2EE
Development

Web Service
Development

zSeries COBOL
Development

Monitoring
Tools

• This is what provides a consistent look-and-feel between the different
development environments

• For this class we’ll be using several: Rational Application Developer,
WebSphere Developer for zSeries, WebSphere Message Broker Toolkit

At one point in time Eclipse was a tooling environment owned by IBM, but IBM then turned it over to

the open source community and it now is managed by the Eclipse organization. Eclipse is a set of

software that provides a common framework for other tools that “plug into” the base Eclipse, or

foundation. The value of this is that it provides a consistent look and feel between the different

development environments.

Note: that used not to be the case. It used to be that one tool was quite a bit different look and feel

from another, and that made for some difficult learning going from one tool to another.

Web Services Support

Unit 2a-32

© 2007 IBM Corporation32 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Architectural Picture of Eclipse-Based Web Services Development

First lab …

Rational Web
Developer

WebSphere
Developer for

zSeries

Rational
Application
Developer

WebSphere
Message

Broker Toolkit

Eclipse

WebSphere
Integration
Developer

• Web development (servlets, JSPs)
• Web services development
• XML and DB access tools

• J2EE/EJB & Portal Development
• Component Testing
• Code Review & Runtime Analysis

• z/OS Application Development
• XML Services
• BMS Map Editor
• COBOL and PL/I DB2 Stored Procedures
• EGL COBOL Generation

• BPEL based processes

• WebSphere Broker development

Message is that different tools provide specific development
functions, all integrated into Eclipse-based foundation

This is how the various tools relate to one another and functions performed:

This is the architectural layout of the different Eclipse-based products from IBM and what they do.

Web Services Support

Unit 2a-33

© 2007 IBM Corporation33 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Our First Lab

Rational Application Developer

Develop Web
Service EAR EAR

z/OS

WebSphere
Application Server

(standalone)

EAR

Internet
Yahoo!
Finance

Deploy
through
Admin

RAD Web
Services Client

Symbol: IBM

Price: $83

SOAP (XML)

SOAP (XML)

HTTP URL
with ticker

symbol

HTTP
Response
with price

HTTP
Port

The first lab will have us using the J2EE capabilities of RAD to build a very
simple web service.

• Our client will be the integerated test client of RAD

• Our service will run on WebSphere for z/OS

• Our “data source” is Yahoo! Finance

• All will share same WebSphere instance
Pay attention to your unique team number

This will introduce
us to RAD and

simple concepts of
web services

In this first lab what we’re going to do is create a very simple Web Service that’ll run in WebSphere

Application Server. This Web Service will accept a SOAP request from the test client that runs

inside of RAD, and that Web Service will then turn and fetch a stock price based on the ticker symbol

you supply. That means the Web Service is going to turn and drive Yahoo! Finance using the

standard URL method (in other words, not a Web Service). But the interaction between your client

running in RAD and the Web Service running in WebSphere will very definitely be the standard

“SOAP over HTTP” methodology.

For this lab we’re all going to be sharing the same WebSphere Application Server instance. That

means you’ll each deploy your developed EAR into the same running copy of WebSphere. That’s

okay, but it means we’ll need to be careful and insure uniqueness. The lab instructions provide that

uniqueness.

Web Services Support

Unit 2a-34

© 2007 IBM Corporation34 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Web Services and

CICS TS 3.1 and 3.2
Web Services prior to CICS TS 3.1 generally not recommended

Web Services Support

Unit 2a-35

© 2007 IBM Corporation35 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

CICS is an Application Server

Several ways to expose CICS resources as Web Service …

CICS is a system that hosts applications, and provides a rich set of “services”
which the applications may make use of:

CICS Services

External Data
Resources“EXEC CICS” API C++ classes for CICS JCICS classes for Java

“CICS Programs”COBOL

C/C++

PL/I

Assembler

Java EJBs

CICS EJB Support
(transparent mapping)

CICS

Program
Access

JVMs

There are many ways to access programs running in CICS -- 3270 terminal,
EXCI or EPI, RMI/IIOP, MQ, HTTP. Our focus here is going to be accessing via
Web Services.

These are the
“existing assets”
we’re looking
“expose” as
services

The first thing to put on the table is that CICS is in many ways an application server -- it hosts the

running of applications within it, and it provides a rich set of “services” that applications can make

use of rather than having to write their own. It provides a way to access backend data such as DB2

or IMS.

Programs written to run in CICS may be written in the traditional languages, COBOL, PL/I or

Assembler; C or C++; as well as Java, in either “POJO” format (Plain Old Java Object) or EJB

(Enterprise Java Bean). Each of these can gain access to the services provided by CICS, but

though different means based on the programming language.

When it comes to accessing programs hosted by CICS, there’s a myriad of ways. Later on we’ll

have a picture that shows the options available to you. In this workshop our interest is showing how

to access Web Services … and specifically, Web Services that are exposing an existing CICS

application as a Web Service.

Web Services Support

Unit 2a-36

© 2007 IBM Corporation36 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Different Architectural Approaches to CICS and Web Services

CICS as provider vs. CICS as requester …

This represents a few, and provides an illustration of what we’ll focus on:

SOAP/HTTP

SOAP/MQ

C
O

M
M

A
R

E
A

A
p

p
li

c
a

ti
o

n
s

B
M

S
 (

3
2
7

0
)

A
p

p
li

c
a

ti
o

n
s

CICS

Web
Service
Client

HATS

WebSphere z/OS

1

2

Java

3

1. SOAP/HTTP to Host Access Transformation Services (HATS), an application that runs in WebSphere and provides a
web service interface (or browser interface) for BMS (3270) applications in CICS

2. SOAP/HTTP or SOAP/JMS to custom web service running in WebSphere (similar to previous lab).

3. Web service interface running inside of CICS, and accessed either through CICS HTTP listener (or MQ)

EXCI

TN3270

Suppose you have some existing applications that are in CICS, and you want to expose them as a

Web Service. There’s a couple of different ways you can do that:

1.If your application is a BMS 3270 application, you can expose it to the web using an IBM product

called HATS (Host Access Transformation Services). HATS provides a way to make the 3270

application available either to browsers (it provides a terminal-to-HTML mapping facility), or to

Web Service clients. HATS runs in WebSphere Application Server

2.You can develop your own Web Services application that runs in WebSphere Application Server.

The implementation of the service behind the Web Service interface could make use o the JCA

connector to access CICS via EXCI. This is accessible as SOAP over HTTP or SOAP over

JMS.

3.You can develop a Web Service that runs inside of CICS itself. This Web Service would be

accessible via either SOAP over HTTP or SOAP over JMS. The Web Service would then turn

and invoke the CICS application using function within CICS designed to do this. Note: this is

what we’re going to do in lab.

Note: please do not think this picture is the definitive list of all possible ways to access existing CICS

applications using Web Services. There are other variations on this theme that provide slightly

different approaches. This picture represents three key ones we wished to highlight at this point in

time.

Web Services Support

Unit 2a-37

© 2007 IBM Corporation37 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Provider vs. Requester -- CICS Can Do Both

CICS as a Web Service Provider …

We typically consider CICS as a provider of web services:

Web
Service
Client

Appl

CICS

But it can also be a consumer (or requester) of web services:

Appl

CICS

Web
Service
Client

This web service could be
anywhere accessible to CICS --
inside your company or outside

We’ll focus on the top one for the most part. The concepts you’ll see are mostly
applicable to both environments. See “CICS Web Services Guide” (SC34-6458) for more.

The case where existing (or new)
CICS applications are exposed as
reusable services.

External
Service

We need at this point to make sure a key concept is communicated. And it is this: CICS can be a

Web Services provider (the typical scenario, and the one we’ll focus on most in this workshop), and it

can be a Web Services requester. That is, a program in CICS can call out and invoke a Web

Service outside of CICS. This would be done, for example, if the CICS program needed some piece

of data that resides in a service outside of CICS.

As we said, we’re going to focus on the top scenario. Our focus is going to be exposing existing

CICS resources as Web Services. But we wish you to know that CICS applications can call out to a

Web Service as well.

Web Services Support

Unit 2a-38

© 2007 IBM Corporation38 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

CICS as a Web Services Provider

Understanding the Pipeline …

Recall the three basic requirements of being a Web Services provider:

Ability to receive the SOAP request

Standard ways: SOAP/HTTP or SOAP/JMS

Ability to read and understand the contents of the SOAP request

XML parser along with implementation of the “WS-basic” standards

Ability to act upon the request

This is the “behind the interface” implementation we’ve shown before

HTTP

MQ

Built-in SOAP
Handler

Handler
Program

CICS
Transaction

CICS

This is defined within something called a “Pipeline,” which is a structure
within CICS that invokes your customized handler program(s).

This is what does the mapping of XML to application data structure and
invokes the CICS transaction.

Here we provide a look at the basic way in which CICS handles a web service request. Go back to

our statement about the three basic requirements of being a web services provider: the ability to

receive the SOAP request; the ability to read and understand the SOAP request; and the ability to

act upon the request.

Receiving the request -- CICS has a built-in HTTP listener, so it can take in SOAP over HTTP. It

also has the ability to receive SOAP that was sent over JMS. This would be done over MQ via the

CICS MQ Bridge. In either case, the SOAP request is received by the CICS server.

Ability to read and understand the SOAP request -- this ability is split across two things: a built-

in SOAP handler function of CICS (which understands the SOAP envelope components), and your

custom handler program that is written to understand the request held within the envelope. The

request portion of the SOAP envelope will have XML tags specific to the CICS tran in the

background being invoked. Your custom handler is what understands those tags and formats up the

native CICS transaction invocation.

Ability to act upon the request -- this is done by a combination of your custom handler program

and the existing CICS transaction. Your custom handler turns the XML request into COMMAREA

and drives the CICS tran. This is all work done “behind” the web services interface.

This notion of a custom handler relates to something called a “Pipeline,” which is a structure within

CICS that is invoked when a request is received. The Pipeline contains information about the

handlers to invoke, which in turn invoke the CICS Transaction.

Web Services Support

Unit 2a-39

© 2007 IBM Corporation39 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The CICS Web Service “Pipeline”

It can be more sophisticated …

The “pipeline” is a definition within CICS that defines what “handlers” will be
invoked upon receipt of the request:

CICS Region

“Pipeline” Appl

Web
Service
Client

Built-in SOAP
message handler

User
defined
handler

User
defined
handler

CICS
Application

Web
Service
Client

Inbound request

Outbound request

The purpose of this is to provide a framework for
transforming the inbound Web Service request
(SOAP) into what’s needed to drive application

Remove SOAP body
from envelope

Read SOAP body and
construct COMMAREA

In our lab:

Receive COMMAREA
and build SOAP body

Build SOAP envelope
and insert SOAP body

CICS
Application

We’ll build handler
program that does this.

We’ll use the source
COBOL as input to WD4Z

A “pipeline” is a kind of message handling thing implemented inside of CICS. The purpose of the

pipeline is to provide a framework in which you can define how you want the received SOAP

message processed prior to invoking the CICS application. The upper-most picture in the chart

shows the position of the pipeline relative to the HTTP port and the CICS application.

The middle picture shows some detail -- the pipeline has within it a built-in SOAP message handler,

which means it’s capable of reading into the SOAP envelope and stripping out the body of the

message. Once the body is extracted, the message is handed to a user-defined program, or

“handler.” There can be multiple handlers defined to the pipeline, and if that’s the case then the

pipeline processes them in sequence. In the case of this picture, the processing is done left to right

as the message moves from the SOAP handler towards the CICS application. When the response

comes back, the message will flow through the pipeline again, only this time in reverse.

But you don’t need to have more than one handler … you may wish to keep things simple and have

only one. For example, in our lab we’re going to define only one message handler. It’s purpose will

be to take the received XML and construct a COMMAREA that will be passed to the application.

Upon return, the CICS application will return data in the COMMAREA. The handler, operating in

reverse, will take the COMMAREA and form up the response XML. The built-in SOAP handler out

front will either strip the SOAP headers off (inbound) or build them back up (outbound).

This processing can be quite sophisticated. The next chart illustrates this.

Web Services Support

Unit 2a-40

© 2007 IBM Corporation40 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Some More Sophisticated Examples of Pipeline Processing

Tools to develop these …

Just to give you a flavor that it’s not just a simple linear processor, here are
two scenarios that point out some of the flexibility of this thing.
(Both examples come from “CICS Web Services Guide,” Chapter 4)

MQ Input

HTTP Input

Initial Handling Separated by Input Type

For example, encrypting a
portion of the payload prior to
sending on public network, but
only for HTTP, not internal MQ

Handlers 4 and 5 are common to
both input types

Interrupting the Flow and Processing Error Message

Handler 2 detects
something wrong

Constructs appropriate
message and returns

For example, an inappropriate
security credential, or something
not correct in request information

The processing can be more than just simple linear processing. The pictures above came from the

CICS Web Services Guide, chapter 4, which outlined a couple of more sophisticated examples:

• In the first example, two different input methods are defined -- HTTP and MQ. Depending on

which channel the message came in on, either handler 1 or handlers 2 and 3 would be

processed. Then the two flows converge onto handler 4 and 5. In reverse it would go: 5, then 4,

then either 1 or 3 and 2, depending on whether the output was HTTP or MQ.

• In the second example we show a linear flow again, but offer a twist: error handling. Here the

flow comes in on handler 1, then proceeds to handler 2. But handler 2 detects something wrong.

So it processes an error message and turns the flow back around, sending it back to 1 and then

back to the requester. Handler 3 never sees the message, and the CICS application definitely

never processes anything.

So the basic concept here is that the pipeline defines a framework in which your custom message

handler programs are processed when they are received. The next chart discusses how these

things are developed.

Web Services Support

Unit 2a-41

© 2007 IBM Corporation41 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

CICS Web Services Development Tools

Lab exercise artifacts …

We’ll discuss two primary tools used to develop CICS web services:

CICS Web Service Assistant

Consists of a set of JCL batch utilities that generate program components

� DFHLS2WS – Transforms a language structure into a Web Service Binding File and a Web Service

Description (WSDL). Use this to put a web service front end on an existing application.

� DFHWS2LS - Generates a Web Service binding file from a Web Service description (WSDL). This utility also

generates a language structure that you can use in your application programs. Use this to create a new
CICS application based on a WSDL, or to enable CICS to be a web service requester

WebSphere Developer for zSeries (WD4Z)

An Eclipse-based tool for zSeries development (not just web services), it does what CICS Web
Service Assistant does with additional flexibility and capabilities.

Generally speaking, WD4Z is the more powerful alternative.
CICS Web Service Assistant is useful for more basic web

services enablement and when Eclipse expertise is lacking

We’ll use WD4Z in the lab

There are two basic approaches avialable to you when it comes to developing the Web Services

handler programs:

• One is to use the “CICS Web Service Assistant,” which is a set of batch JCL jobs that render

handler programs without requiring a graphical development environment like Eclipse. Two
batch jobs are available -- DFHLS2WS and DFHWS2LS. The difference between them is what’s

used as input to the process.

• WebSphere Developer for zSeries, which is an Eclipse-based tool for lots of different z/OS-

related development, not just Web Services. You can consider WD4Z a superset of what Cics

Web Service Assistant offers.

If you were looking for the most powerful of the two, WD4Z would be it. CICS Web Service Assistant

is made available when skills in using an Eclipse-based environment like WD4Z are lacking, or if it’s

been determined that CICS Web Service Assistant provides all that’s required for your development

needs.

We’ll use WD4Z in the lab. And what we’ll create is discussed next.

Web Services Support

Unit 2a-42

© 2007 IBM Corporation42 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

What’s Produced by WD4Z for Our Web Service Lab

Mapping received requests to pipelines …

We’ll use the lab we’ll do in a short while to illustrate the process of creating
and defining a Web Service to CICS

z/OS
System

COBOL source, including
COPYBOOK of existing

CICS application

COBOL source to our new
handler, which converts SOAP
XML-to-COMMAREA and vice-
versa

WSBIND file, which is a binary file
that contains information about the
service, including the “URI Map” that
triggers the execution of the pipeline
and web service

WD4Z

Import
into
WD4Z

Run through
the creation

wizards
We’ll compile this
into the CICS
LOADLIB

We’ll use this
when defining the
pipelineMore complex scenarios can

occur, of course. But this
illustrates some essential
elements of the process

Transfer down to WD4Z

Using simple drag-and-drop capability

Transfer
back

Here’s a brief illustration of what we’re going to do in lab. It’ll help demonstrate what’s produced by

the tooling to create the Web Service handler in the pipeline.

• We’re going to bring down to the WD4Z tool the COBOL source to the WBCSCUST application

that’s currently up in our CICS region. By doing that we’re going to give WD4Z visibility to the

language structure of the application -- the input and output fields.

• We’ll then run through the Web Service creation wizards to create the deployment artifacts. This

will consist of two files:

1. A source COBOL file that will be, when compiled into the CICS load libraries, the handler

program in the pipeline. This COBOL is not the same thing as the COBOL you downloaded

to start the process. This is COBOL that implements the handler that turns XML to

COMMAREA, and COMMAREA back into XML.

2. A WSBIND file, which is a binary-format file that contains information about this handler,

including the “URI” associated with the pipeline and the handler program module(s) that are

part of the pipeline definition.

• You’ll transfer both back up to the z/OS system using the transfer capabilities of WD4Z..

Web Services Support

Unit 2a-43

© 2007 IBM Corporation43 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Mapping of URIs to Pipeline Handlers

Existing application reuse …

CICS is capable of supporting many separate pipelines. How does it relate a
received web service request to a given pipeline? With URIMAP information:

Web
Service
Client

PipelinesCICS

http://.../wdz/CustInquiry
How does CICS
know which
Pipeline to invoke?

WSBIND Files
on Shelf

Uri($556150) Pip Ena Http

Host(*) Path(/wdz/CustInquiry)

:

Uri(DDWURI6) Ser Ena Http

Host(*) Path(/fund/prog/HttpReq1)

Webs(WBCSCUST) Pip(WSPIPE)

Ins Uri($556150) Pro(WBCSCUST)

URIMAP -- CEMT I URIMAP

WEBSERVICE -- CEMT I WEBSERVICE

These typically created
dynamically when CICS

scans WSBIND files

Or issue
PERFORM PIPELINE SCAN

The Pipeline definition holds the information about the handler
program(s) to invoke, based on scanned WSBIND files

When multiple pipelines are defined, and each has its own handler program included, how does

CICS know how to relate a received web service request to a given pipeline so the proper handler

can be invoked? It’s done through CICS’ knowledge of the “URIMAP” information contained in each

of the WSBIND files. CICS scans those at startup (and periodically thereafter) and reads into an

internal table the relationship of the “Path” to the pipeline.

Consider the example above. CICS has scanned the WSBIND files defined to it, and it creates a list

of URIMAP definitions. It also creates a series of WEBSERVICE definitions. The URIMAP has the

“Path,” which is like the “context root” in WebSphere -- it is the portion of the URL that follows the

host and port. The URIMAP definition has a CICS-created number that ties the definition to a

WEBSERVICE definition. That definition has the PIPELINE information. The pipeline is then

invoked.

Web Services Support

Unit 2a-44

© 2007 IBM Corporation44 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Reusing Existing Application Resources

Application Aggregation …

You can do this either directly or indirectly using a wrapper program:

Application Development for CICS Web Services

SG24-7126

Communication
Logic

Business
Logic

Wrapper
Program

HTTP

MQ

Built-in SOAP
Handler

Handler
Program

Pipeline

Existing Application

EXEC
CICS LINK

EXEC CICS LINK

EXEC CICS LINK

CICSCICSCICSCICS

Greater control over
interface exposed as
web service

Ability to expose
multiple CICS trans as
a web service

This is listed as a “best practice” in the following redbook:

If your app is not well
structured (comm logic
integrated with business
logic) it might not be a
good candidate for
being exposed as a web
service

If you plan to expose existing applications as web services, you can do that in two different ways:

you can either invoke from the Pipeline handler directly, or you can provide a wrapper program

which gets invoked by the Pipeline handler and the wrapper turns and invokes the existing

application. The advantage of the latter is that it gives you additional flexibility in how the existing

application is exposed -- your wrapper can determine what data fields are used and the format of

those fields. The redbook SG24-7126 cites this as a “best practice,” but allows for the direct

invocation as well.

Both are predicated on the idea that your existing application is well structured … that the

communication and presentation logic is properly separated from the business logic. If that’s not the

case, then the existing application may not be a good candidate for exposure as a web service using

this methodology … perhaps HATS might be a better choice if it’s a 3270 application and the

presentation logic is buried with the business logic.

Web Services Support

Unit 2a-45

© 2007 IBM Corporation45 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

CICS Application Aggregation

Service Flow Modeler …

Imagine you have several CICS transactions you wish to “combine” and
expose as a single web service. How can that be done?

SOAP/HTTP

SOAP/MQ

CICS

Web
Service
Client

HATS

WebSphere z/OS

1

2

Java

BMS
3270

TN3270

COMM
AREA

EXCI

COMM
AREA

Wrapper

EXEC CICS
LINK

Service Flow Modeler

COMM
AREA

BMS
3270

3

4

5

Suppose you want to expose multiple CICS transactions as web services, but ideally you’d like to

expose them as a single web service, rather than separate individual ones. How can that be done?

In several ways:

1 - HATS can be used to string together multiple 3270 screens to form a single web service. The

limitation here is that HATS can only work with 3270 screens, not COMMAREA applications. But if

your application is 3270 based, HATS is a very good solution.

2 - You could write a web service that runs in WebSphere that turns and drives the various CICS

trans in the order you desire. In this scenario WebSphere can act as the transaction manager for the

multi-part web service, rolling back the updates if some piece of the overall flow fails.

3 - You can write a CICS wrapper program that then turns and drives the other CICS trans in the

order you desire. Here CICS itself would be the transaction manager. Access to the wrapper

program would be through the CICS web service interface support of CICS. (Or you could drive the

CICS wrapper program from WebSphere.)

4 - You can use Service Flow Modeler, which we explore next. Without going into too much detail,

suffice to say SFM handles both COMMAREA and 3270 applications. It can be invoked from the

CICS web service interface with a Pipeline and handler program.

5 - You can also drive a SFM flow as a normal CICS tran from WebSphere.

Let’s look a little closer at Service Flow Modeler …

Web Services Support

Unit 2a-46

© 2007 IBM Corporation46 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Service Flow Modeler

Summary …

Service Flow Modeler is a function of CICS V3.1 and above (with support in
WebSphere Developer for zSeries) to construct an aggregated application flow

WebSphere Developer for zSeries (WD4Z)

CICS
Appl Appl 3270

SFM Runtime Function

• COBOL source that implements the flow
• Run-time properties files to support flow
• JCL to compile into CICS

Two pieces to this:
• A WD4Z function -- graphical development

environment (above)
• A set of CICS functions that provides supporting

framework for developed flow

Similar in concept to
what you’ll see in
the WebSphere
Message Broker

Toolkit

The key is that this provides a way to construct a
“composite” service comprised of multiple CICS
functions. One Web Service invocation results in

multiple things going on behind the scenes.

Can invoke with either Pipeline handler, EXCI or EXEC CICS LINK

In
v
o

c
a
ti

o
n

This feature consists of two pieces -- a development side feature that is part of WD4Z, and a set of

runtime functions that provides the service up in CICS. The development side of this consists of a

graphical environment where you draw out the flow you desire, assigning properties to each element

in the flow, which then results in deployable code. The concept is similar to what you’re going to see

in WebSphere Message Broker Toolkit later.

What SFM provides is a way to expose a single Web Service that is, in reality, a composite

application behind the scenes. And the composition of the application is based on how you modeled

it in the development environment.

Web Services Support

Unit 2a-47

© 2007 IBM Corporation47 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

CICS TS 3.2 Web Services Enhancements

Summary …

http://www.ibm.com/software/htp/cics/tserver/v32/appcon/

New in CICS TS 3.2 with respect to Web Services:

• WSDL 2.0

• MTOM and XOP

• WS-I Basic Profile 1.1 and Simple SOAP Binding Profile 1.0

• WS-Trust specification in WS-Security

In addition to what was in CICS TS 3.1 and carried forward:

• HTTP 1.0 and 1.1

• SOAP 1.1 and 1.2

• WS-Coordination

• WS-AtomicTransaction

• WS-Security

As well as other enhancements not
directly related to Web Services.

Check out the URL for more information.

CICS TS 3.2 recently became available, and with it came some enhancements to the web services

support -- these are enhancements in addition to the support that was already there in TS 3.1. Also,

TS 3.2 brings other enhancements to the table as well … so check out the URL at the top of the

chart for a better review of the merits of this new release of CICS.

Web Services Support

Unit 2a-48

© 2007 IBM Corporation48 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Reference Information

IMS …

For more complete information about CICS and CICS Web Services:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/zswpdf/cicstszos31.html

SC34-6458

The complete z/OS CICS TS
3.1 library in PDF form,
including the SC34-6458 book

The CICS Web Services Guide is the definitive guide to Web Services on CICS. You can access

that book, and the whole CICS library, through the URL shown on the chart.

Now onto IMS.

Web Services Support

Unit 2a-49

© 2007 IBM Corporation49 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Web Services and

IMS

Web Services Support

Unit 2a-50

© 2007 IBM Corporation50 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

IMS
Connect

A Few Ways to Get Web Service Request into IMS

The IMS SOAP Gateway in some detail …

Several of the ways involve front-ending IMS with a web service in WebSphere

IMS

Web
Service
Client

Local WebSphere z/OS

Java

IMS SOAP Gateway

O
T

M
A

O
D

B
A

IMS DC RAR

IMS DB RAR

DB

Applications

Remote WebSphere
(any platform)

IMS DC
RAR

TCP

TCP

Notice that none involve web service
interface running inside of IMS

This is our focus … IMS SOAP Gateway

Those make use of standard
adapters to get back to IMS

SOAP/JMS

IM
S

/M
Q

JMS/MQ

SOAP/HTTP

SOAP/HTTP

S
O

A
P

/H
T

T
P

TCP

There are many ways one can access IMS data as a Web Service, but none of them involve

accessing IMS directly with HTTP. In all cases there’s something between the client and IMS. This

picture illustrates five different scenarios:

• The top-most box illutrates WebSphere Application Server for z/OS running on the same MVS image as
the IMS region. We learned earlier that WebSphere itself is an excellent host of a Web Service interface,
and from there a long list of data connection options is available. Two of those are data connectors to
IMS. One is called “IMS DB RAR,” which is really a JDBC implementation to access the IMS database.
This can only be used when the application using the files in the RAR is local to the IMS region. The
second is something called “IMS DC RAR,” which is a way to access IMS applications using OTMA. If the

application is “local” (same MVS image) then it can directly access without need of IMS Connect. But even
if it is local you may opt to connect via TCP through the IMS Connect function. You can also access your

Web Service through JMS, then go MQ back to the IMS/MQ bridge and into IMS.

• If WebSphere is “remote” (not on the same MVS image) -- either WebSphere z/OS or WebSphere on any
platform -- then IMS connect is required as the communication from the application to IMS will be over
TCP. (Note: not shown is flowing JMS/MQ to IMS/MQ Bridge. It’s possible, but the picture was getting
too cluttered.)

• The final means is through something called the “IMS SOAP Gateway,” which is function implemented on
a distributed box (it is not available for z/OS). The SOAP gateway is capable of handling the SOAP

envelope and communicating with IMS Connect to execute the service.

The focus of this discussion will be on the IMS SOAP Gateway. The other methods are really more

related to WebSphere and traditional data connector access.

Note: Why would someone choose the IMS SOAP Gateway over WebSphere? One reason -- if

there’s not at present any built-up skills in WebSphere. If WebSphere already exists then going that

route would be relatively easy. But building up WebSphere skills just to handle SOAP might be more

effort than one desires.

Web Services Support

Unit 2a-51

© 2007 IBM Corporation51 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

IMS SOAP Gateway

Convert or not to convert? …

Runs on a non-z/OS platform, it acts as a front-end SOAP handler. It provides
the web services interface and forwards XML body back to IMS.

Web
Service
Client

Windows XP, Windows
2000, zLinux, AIX

XML
Body

IMS

O
T

M
A

IMS
Connect

XML
Adapter and
Converter

A
p

p
l

WebSphere
Developer for

zSeries

Application
COBOL
Copybook

1. WSDL File
Used by the SOAP Gateway. This is how the GW knows about the various IMS
applications exposed as services

2. Correlator File
Also used by the SOAP Gateway … this is what relates messages to/from IMS with
the WSDL so the SOAP envelope can be built.

3. XML converter driver code
Used in IMS Connect to convert XML to application data and back. Optional …

Process here bears a bit
more exploration

The SOAP Gateway function is something that runs on a non-z/OS platform (Windows XP or 2000,

AIX or z/Linux). It’s role is to act as an HTTP and SOAP handler out front of IMS. It receives the

SOAP request, strips the request body out of the SOAP envelope and passes that back to IMS

Connect for processing. The message is still in XML format at this time, so more handling is

required.

IMS Connect receives the message and then prepares to pass it back to IMS (via OTMA). Here a

decision needs to be made -- should the XML be converted by IMS connect? Or passed back to the

application for conversion? If converted by the IMS Connect function then the XML Adapter and

Converter function needs to be employed. If passed back to the application, then the application

needs to be prepared to do XML conversion. We’ll look at this process in a bit more detail next.

To make this work you need some key components that are produced by WebSphere Developer for

z/Series:

• The WSDL file -- this is used by the SOAP Gateway to understand this exposed web service.

Any single instance of the SOAP Gateway can handle multiple services in the backend, so

having all the WSDL files allows the SOAP gateway to understand what services it supports.

• The Correlator File -- also used by the SOAP Gateway, this allows the SOAP Gateway to relate

messages it sees coming back from IMS to the specific web service it came from.

• The XML converter driver code -- if used (it is optional), it is what gets invoked by IMS Connect

to convert the data contained in XML to the format that can be handled by IMS via OTMA. The

same happens in reverse -- when the data comes back from IMS, the converter driver re-formats

the XML response and passes it back to the SOAP Gateway.

As mentioned, the XML converter function is optional. Let’s explore that component a bit more

closely.

Web Services Support

Unit 2a-52

© 2007 IBM Corporation52 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

XML Adapter and the XML Converter Driver

The big picture …

In all cases the Gateway is going to pass XML back to IMS Connect. Two
choices: XML handled by converter, or XML handled by the application.

So you have two options:

• XML Adapter/Converter -- no changes to your application

• XML handled by your application -- may require changes to application

IMS

O
T

M
A

IMS
Connect

XML
Adapter

A
p

p
l

Service
Converter

Driver

Service
Converter

Driver

IMS
Connect

XML
Adapter and
Converter

Converter driver code
produced by WD4Z

“XML Adapter” feature of IMS Connect
provided with APAR PK24912 and PK29938.

IMS Connect Config: ADAPTER=(XML=Y | N)

Option to use XML Adapter is set at the IMS Connect level. If
on, then XML converters expected. If off, then XML sent to
application.
You may have multiple IMS Connect Regions -- one that uses XML
Adapter, another that does not. SOAP Gateway will route to one or
other based on WSDL and Correlator files for application request

It knows what XML converter
to invoke based on

information in header
created by SOAP Gateway

The SOAP Gateway will, in all cases, pass XML back to IMS Connect. The SOAP envelope will be

stripped out, but the XML body will be passed back. That XML needs to be handled by someone,

and the choice is yours -- have it handled by a new feature called the XML Adapter and Converter, or

have it handled by your application.

The choice to enable or not enable the XML converter is done at the IMS Connect level. If you turn it
on (ADAPTER=(XML=Y) then IMS Connect expects to invoke some converter driver code. If not

enabled, then IMS Connect expects to pass XML back to your application.

Let’s say you have it enabled. Then IMS Connect is going to look to invoke XML converter code.

That code is something produced by WD4Z and is compiled into load libraries accessible by IMS

Connect. IMS Connect knows which converter driver to invoke based on information in the header

created by the SOAP Gateway, which is then passed back to IMS Connect. IMS Connect reads the

converter driver information and then passes the XML to that converter. When the conversion is

done, the data is then passed back to your IMS application through OTMA. On the way back, the

response is again passed through the XML converter driver, which formats up the XML and passes it

back to the SOAP Gateway, which wrappers it in a SOAP envelope and passes it back to the client.

Why would you use one vs. the other? It really has to do with the impact to the application in the

background. If you employ the XML converter you don’t need to touch your application -- it remains

unchanged. But if you don’t use the XML converter, then your application is going to be expected to

handle the XML. So you’d have to make sure your application is prepared to do that.

Web Services Support

Unit 2a-53

© 2007 IBM Corporation53 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The Big Picture Flow (from SOAP Gateway PDF … info next chart)

Reference material …

To put it all into context …

1

2

3

8

7

5

4 6

1. The Web service client application sends a SOAP message to
IMS SOAP Gateway which contains input to the IMS application
in an XML format.

2. IMS SOAP Gateway processes the SOAP header (XML) and
retrieves the appropriate correlation and connection
information for the input request.

Artifacts produced by WD4Z and placed in GW directory

3. IMS SOAP Gateway sends the input XML data to IMS Connect
using TCP/IP after adding the appropriate IMS Connect header.

Header is what allows IMS Connect to know what to do with XML
coming in.

4. IMS Connect calls the XML Adapter which in turn calls the XML
Converter to perform the XML to IMS application format
transformation.

If adapter function enabled. Steps 4, 6 skipped if off.

5. IMS Connect then sends the message for further processing.
From this point on, the processing is the same as a normal
transaction flow. The transaction gets executed and the output
is queued.

6. IMS Connect calls the XML Adapter in order to perform the
transformation of the IMS application format back to XML.

7. IMS Connect sends the output XML message back to IMS SOAP
Gateway using TCP/IP.

8. IMS SOAP Gateway wraps a SOAP header on the output
message and sends it back to the client application.

WD4Z

And
correlator

file

So here’s the big picture, as provided in the SOAP Gateway PDF we’ll reference on the next chart.

The text on the chart explains everything is fair detail. You can go to the PDF for more detailed

information.

Web Services Support

Unit 2a-54

© 2007 IBM Corporation54 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Reference Information

DB2 …

http://www.ibm.com/software/data/ims/soap/

We’ve covered only the highlights of the Web Services solution to IMS. To get more information

about the SOAP Gateway you should go to the IMS documentation library, and specifically the PDF

found there that covers the SOAP gateway. It has much more detailed information about

configuration and setup, as well as security issues we’ve not covered here.

Web Services Support

Unit 2a-55

© 2007 IBM Corporation55 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Web Services and

DB2

Web Services Support

Unit 2a-56

© 2007 IBM Corporation56 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Web Service Interface for DB2

DADX file in concept …

As before, we start the discussion by determining where the Web Service
interface can be hosted. Unlike CICS and IMS (with SOAP GW), DB2 does not
have an HTTP listener. So we have to put something out front.

Local WebSphere z/OS

Remote WebSphere
(any platform)

DB2 8.1 or higher

D
R

D
A

DB

Type 2

Type 4
Driver

Web Object
Reference
Framework

Standard WebSphere
Web Service

Java code uses JDBC to
access DB2

SOAP access via HTTP or JMS

DADX File
Document Access
Definition ExtensionWebSphere

or Tomcat

WORF is a servlet and some Java classes that provides a
framework to establish a JDBC connection to DB2.

Servlet may run in WebSphere or Tomcat

No JDBC provider or data source definitions are necessary. All the
information about the web service and the connection to DB2 is
abstracted in XML.

DB2 Development Workbench is an Eclipse tool used to develop
web services (and DADX) to deploy into WORF.

Type 4

SOAP access HTTP only

We see a common thread here … the first question seems always to be: “Where can the SOAP

interface be hosted?” We saw in CICS that it has its own HTTP (or MQ) listener. IMS provided it in

the SOAP Gateway. WebSphere is a natural because it’s made to be an HTTP, MQ and JMS

listener. But what about DB2? It has no native HTTP listener. So something has to go out front to

host the interface. For DB2, that something is called “WORF” -- Web Object Reference Framework.

WORF is really a specialized servlet that provides the SOAP interface and provides the connection

back to DB2. Because it’s a servlet it can run in either WebSphere or Tomcat. It uses something

called a DADX file to provide the definitions of how the request is to be handled. We’ll see more on

that in a bit.

DB2 can act as a provider or requester. In either case, the access is via SOAP over HTTP. We’ll

see how it can be a requester in a little bit.

In addition to using WORF, you may also code up a Web Service and host it in WebSphere, either

on the same z/OS system or a remote one. The development of the Web Service would be done

with Rational Application Developer, and the connectivity to DB2 in the background would be through

the normal JDBC support provided by WebSphere.

Web Services Support

Unit 2a-57

© 2007 IBM Corporation57 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

DADX File in Concept

Web Service Provider Operations via DADX file …

The DADX file is what defines how the Web Service request is converted to the
appropriate SQL or Stored Procedure calls. DADX produced by Eclipse-based
tooling:

DB2
Development
Workbench

Eclipse

WORF

DADX File

Interpret Web
Service Request

Issue associated
SQL or Stored
Procedure Call

<?xml version="1.0" encoding="UTF-8"?>

<DADX

xmlns=http://schemas.ibm.com/db2/dxx/dadx>

<documentation>

Simple DADX example that accesses the SAMPLE database.

</documentation>

<operation name="listDepartments">

<documentation>

Lists the departments.

</documentation>

<query>

<SQL_query>SELECT * FROM DEPARTMENT</SQL_query>

</query>

</operation>

</DADX>

<sevice>

listDepartments

</service>

DB2

Very simplified
example to show

basic concept.
InfoCenter has

more examples.

It is possible to substitute in values received in
SOAP request.

It’s possible to supply SQL in SOAP request as well

The DADX file acts as a kind of “bridge” between the SOAP request and the action against DB2 in

the background. In that sense it’s conceptual role is to interpret the SOAP request and then perform

the specified actions. Those actions may be SQL calls or Stored Procedure calls.

The chart shows a very simple example of a DADX file. Here the defined request is something
called listDepartments, and the DADX file translates that request to an actual SELECT statement that

will be issued against DB2. The DADX file can be generated using an Eclipse-based tool called the

DB2 Development Workbench.

Note: it is possible to take parameters from the SOAP request and substitute it into the SQL, and it

is possible to supply the entire SQL in the SOAP request. So you do have some flexibility here. Let’s

explore what’s possible …

Web Services Support

Unit 2a-58

© 2007 IBM Corporation58 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Web Service Provider Operations via DADX File

Web Service Provider or Requester …

Here’s a reference list of the operations that can be performed:

SQL operations: non-dynamic
Non-dynamic operations are those that are predefined within the DADX file. There are three elements that
make up the predefined SQL operations type:

<query> - Queries the database

<update> - Inserts into a database, deletes from a database, or updates a database

<call> - Calls stored procedures that can return 0 or more result sets

SQL operations: dynamic
Dynamic operations are those that are generated in a SOAP message with no predefined SQL operations.
The following elements are dynamic operations:

<getTables> - Retrieves a description of available tables.

<getColumns> - Retrieves a description of columns.

<executeQuery> - Issues a single SQL statement.

<executeUpdate> - Issues a single INSERT, UPDATE, DELETE.

<executeCall> - Calls a single stored procedure.

<execute> - Issues a single SQL statement.

Web Services requester
supplies the SQL in its
SOAP message

Which you use depends on how much control the Web Services requester has over
what will be queried. Non-dynamic limits the control; dynamic opens it up.

Example from previous chart

We separate this chart into two categories: non-dynamic and dynamic SQL operations. The

difference is where the SQL is specified -- in the DADX or passed into the DADX from the original

SOAP request. The operations are shown on the chart.

The difference seems to relate to how you want the service exposed. If you want the SQL hidden

behind a service name, then you’d use the non-dynamic operations shown above. That would be

like the example we showed on the previous chart. But if you want the WORF implementation to be

a kind of “SQL proxy” for services, then you can use the dynamic SQL operations to do that.

The reference information we’ll give in a moment will provide a pointer to more specific information

on how this is done. For now we’re staying pretty conceptual.

Web Services Support

Unit 2a-59

© 2007 IBM Corporation59 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

DB2 as Web Service Requester (or “Consumer”)

Reference …

We saw how DB2 can be a provider. But it can also serve as requester. The
request to the service is done from a UDF. Your SQL calls the UDF.

DB2
Development
Workbench

Eclipse

Service WSDL file

User Defined Function

getRate()

SELECT;

AVERAGE (SALARY), getRate(“Canada”), JOB FROM STAFF;

GROUP BY JOB;

SOAP over HTTP

Message is that you can call a Web Service using
SOAP over HTTP. This is done from a User

Defined Function, which is called from your SQL.

The UDF contains the information to format up
the SOAP envelope and request message

The UDF can be developed using the DB2
Development Workbench, an Eclipse-based tool

DB2 is capable of acting as a Web Services requester (or “consumer” if you prefer that term). The

way this is done is to code up a User Defined Function (UDF) that executes the SOAP over HTTP

request to the external service. The creation of the SOAP envelope and the processing of the XML

is all done within the UDF. The UDF is created using a tool like DB2 Development Workbench. You

would supply the WSDL file from the target server to the development tool so it knows how to invoke

the service, and what to expect back.

The UDF you create is then called from SQL. The example above provides an illustration.

Web Services Support

Unit 2a-60

© 2007 IBM Corporation60 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Reference Information

Summary …

http://www.ibm.com/developerworks/db2/zones/webservices/worf/

Links for
documentation and
download of WORF
framework files

(Free of charge)

The URL provided here provides an excellent summary of where other information on WORF and

Web Services with DB2 can be found.

Web Services Support

Unit 2a-61

© 2007 IBM Corporation61 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Overall Summary

Web Services Support

Unit 2a-62

© 2007 IBM Corporation62 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Web Services and Support in Key IBM Products

• “Web Services” is an industry standard method of providing a message-
based interface for program-to-program communications

• It is a key building block of SOA. SOA does not necessarily require the
use of Web Services, but in most cases Web Services will be involved

• At least to some degree.

• IBM is heavily invested in Web Services, and is actively involved in the
development/refinement of standards.

• We saw how key IBM systems support Web Services.

WebSphere Application Server -- a natural host for Web Services; it has a rich application
environment with connectors to access virtually any backend data store
Expose CICS, IMS, DB2 or any other backend data as Web Service through WebSphere

CICS -- built in Web Services Support allows direct invocation of Web Services though
CICS HTTP listener.
Excellent way to expose existing CICS applications as Web Services assets

IMS -- supports Web Services through IMS SOAP Gateway.

DB2 -- supports Web Services through WORF

In all cases except IMS, system can be Web Service requester as well.
Though our focus was much more on being a Web Service provider.

Throughout this presentation we’ve explained what a “Web Service” is and how it operates. Web

Services do not themselves make for SOA, but Web Services can make for a good foundation for

the development of an overall SOA. IBM is a strong player in the Web Services game, and in fact

we’ve shown how key IBM systems can be either a Web Services provider or requester.

Web Services Support

Unit 2a-63

© 2007 IBM Corporation63 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

CICS Web Service Lab

The following picture illustrates at a high level what we’ll be doing in the
upcoming lab.

WD for Z

Develop CICS
Web Service
source code

Transfer
code files
to zSeries

WD4Z Web Service
Explorer

Symbol: 3

SOAP (XML)

CICS HTTP Port

z/OS

CICS

Compile code into CICS Loadlib

Start CICS

Install PIPELINE

WBCSCUST
application

Web Service
Handler and

Wrapper

Customer: Name: Smith
Address: 123 Oak
City: New York
State: NY

SOAP (XML)

The lab you’ll do involves using WD4Z to develop a Web Service that’ll be deployed into CICS. We’ll

bring down the COBOL source for the WBCSCUST application and use that to define the Web

Service interface and the pipeline handler program. We’ll then transfer those artifacts up to z/OS

and do a little green screen work -- compiling the handler into the CICS load libraries, starting CICS

and then defining and installing the pipeline.

To test the new Web Service we’ll use the client that’s part of the WD4Z product. This test client will

present a GUI form into which we’ll provide an integer -- between 1 and 10 -- that will be passed to

the CICS application. That integer will be packaged up into a SOAP envelope and passed up to

CICS, where it’ll invoke our pipeline handler chain (consisting of only one handler). The handler will

strip the integer out of the XML, format up the COMMAREA, and drive the application. The result is

going to be an address -- one associated with the integer we supply. That address is going to come

back as a COMMAREA, so our handler will format it up as XML, wrapper it in a SOAP envelope and

pass it back to WD4Z.

In so doing, you’ll get a feel for how to develop a Web Service -- for CICS at any rate.

End of Unit

