
Introduction and Overview

Unit 1a-1

© 2007 IBM Corporation

A High-Level Introduction to
Web Services, SOA and ESB
(And How System z Plays)

Don Bagwell
IBM Washington Systems Center
dbagwell@us.ibm.com

Introduction and Overview

Unit 1a-2

© 2007 IBM Corporation2 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

This slide intentionally left blank

Introduction and Overview

Unit 1a-3

© 2007 IBM Corporation3 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

A Very Large Topic Space
If you read much of the IBM literature on this subject, you’ll find there are
really three overlapping things being referenced … sometimes all at once:

Role of understanding concept …

Functional Details of
Architecture and

Product Implementation

Development process life cycle
concepts, management and tools

Business re-engineering and business
process management

This is more the focus of this workshop.

• Model
• Assemble
• Deploy
• Manage
• Governance

Realm of consultants and CEOs

Please understand -- each is important in its own way. All are
important to the success of SOA and the value it can provide.

We’ll touch on all levels, but focus mainly on the inside box.

This “SOA” thing is a very broad topic. You’ll find when doing other reading on the subject that
three overlapping things are frequently discussed at the same time:

• The very broad topic of aligning the business itself around the concept of service orientation.
This includes a focus on process management and re-engineering. This is a much higher level
thing than we’ll focus much on in this workshop. This is where CEOs and business
consultants come into play.

• The topic of implementing a disciplined development and deployment lifecycle for your IT
resources. This involves business processes and many different tools that aid in creating,
monitoring and enforcing the lifecycle. The “four hexagon” picture in the middle of this chart is
something you’ll frequently see when reading IBM literature on the subject.

• Finally, we get to the lower level of this -- the functional details and the product implementation
details offered by IBM. This is going to the be focus of this workshop. The reason why we’ll
focus on that is because the audience that attends Wildfire workshops traditionally is and has
been people more interested in this level.

It is important to realize that by focusing on the inside box we are not saying the other boxes are
unimportant. They are very important in their own ways. But the time limits of this workshop and
the objective of focusing on the technical specifics mean we can’t cover those areas that much.

Introduction and Overview

Unit 1a-4

© 2007 IBM Corporation4 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

At a Very High Level
What we’re ultimately getting at here is a decoupling of application requester
from the application provider. And the placement of an intermediary function
to make things more flexible and dynamic:

Objectives of this presentation …

Intermediary
Function

Simple forwarding

or

Complex message
transformation and
protocol remapping

Passing of an
agreed-to request
in message format

Return of information in
the form of an agreed-to

message response

But that’s too high-level to do us much good. That’s what this
workshop is for: to “make real” this very high-level picture.

To start out, let’s offer a very high-level view of the essential concept underlying what we’ll look at.
It’s the act of uncoupling an application requester from the provider. The reason for this, as we’ll
see in a bit, is because when the relationship is tightly coupled, overall application architectures
become very complex and very inflexible. The “loose coupling” we will speak of can be thought of
like a remote method invocation, or a remote procedure call.

Note: don’t take that analogy too literally. It’s a useful analogy when kept at the concept level.

The second piece of this is the placement of a function between requester and provider that acts
as an intermediary. The intent of this intermediary function is to provide a point of flexibility, as well
as a place where more complex message handling can take place if that’s needed. (It won’t
always be needed.)

So the requester sends its request, which passes through the intermediary function towards the
provider. The provider receives the request, handles it, and returns the requested information.
The intermediary function returns the answer to the requester.

If we stopped there you’d be left unsatisfied. It’s too high-level. Too abstract. The purpose of this
workshop is to make that essential picture more “real” by mapping actual product implementation
and architecture examples to this picture.

Introduction and Overview

Unit 1a-5

© 2007 IBM Corporation5 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Objectives of This Presentation

Enterprise Service Bus

SOA
Registry

Workflow
Engine

Service
Broker

Corporate Network

CICS IMS DB2 MQ WAS OtherService
Consumers

Service Providers

We have six high-level objectives:

Understand the “big
picture” concepts

Understand the major
functional components of SOA

Understand IBM
products used to

construct the ESB

Understand how you
can “expose”

applications as services

Appreciate the “value
proposition” of SOA

See how System z
plays a role in this

architecture

1 2 3

4

5

6

Why we’re talking about this …

Please do not worry about “getting” everything on this
chart right away. We have the whole class to do that.

This picture will be used as a prop to introduce the six main objects we have for this first
presentation:

1.First, to understand the big picture and its related concepts. The picture on this chart
illustrates that high-level big picture. At the end of this presentation you should be able to see
what this picture is trying to convey.

2.Understand the value of “Service Oriented Architecture” and have some level of appreciation
for that value.

3.Understand what some of the major functional components of SOA are. This gets a little
tricky because different people have different things listed as the “major components” of SOA.
For this presentation we’ll try to stick to a fairly small list of them.

4.See what IBM products implement the major functional components just outlined in bullet
number 3.

5.Understand how you can take an existing system and “expose” it as a service. This is an
important piece of the puzzle because it gets to how you can start incrementally, and how
SOA does not need to be a “rip and replace” strategy.

6.Finally, to see how and why System z can play in this picture. What you’ll see is that there’s
no reason System z can’t play, and in fact System z brings to the table the same inherent
strengths System z has in general.

It’s important at this point that you not try to understand every element of this picture. It’s just a
starting point to discuss the objectives we have for this presentation.

Introduction and Overview

Unit 1a-6

© 2007 IBM Corporation6 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

What’s Behind This … Why Are We Talking About This

Over the years our application systems have become very complicated, with
tightly-coupled relationships that are often little understood.

Let’s introduce the notion of a “Service” …

Actual application architecture
map from real-life customer

Changes to any part of
this are …

• Difficult to determine what
impact there is on other
components

• Expensive to analyze, often
expensive to implement

• Delays often result in missed
opportunities

Two objectives: eliminate tight (hard-coded) interconnections, and create a
way for one program to dynamically seek, find, and bind to another.

Two basic problems:

1. Inflexible connectivity definitions
(hard-coded, deeply imbedded in
code)

2. Knowledge of relationships lost
over time

Possible third: duplication of
resources because reuse

difficult in this environment

We’ll start by pointing out what’s behind all this talk about “Services” and “Service Oriented
Architecture.” And it has to do with the way our applications have become interconnected over
the years. Nobody started out intending things to end up like this; it’s just how things evolved over
the years.

Note: the picture above -- which looks like a blur of color and lines -- is a miniaturized version of an actual
application architecture map from a real customer. And that’s just one page of many. We’re not making this
stuff up … the complexity out there is very real.

What’s the problem with something like this?

• If it works, and you never consider any changes to it, it’s fine. But it doesn’t always work, and
there’s never a day that someone isn’t asking for something changed or added.

• When changes are considered, it becomes a challenge to determine what the impact of the
proposed change will be. If the proposal is to change the input requirements for application
XYZ, then it’s important to understand what other applications use XYZ, and what impact a
change to XYZ will have on them.

• It becomes very expensive to do the analysis trying to figure out the impact, and it’s often very
expensive to implement the change because it ends up touching other things.

• So what happens is there’s a time lag introduced between the awareness of the need for a
change and the actual implementation. During that time lag opportunities for sales, or cost
reduction, or increased productivity are lost.

Fundamentally, the problem is two-fold: the applications interconnection definitions are often
define in fixed and deeply imbedded places; and over time we’ve lost track of what and how things
connect to each other. Thereore, our broad objective is to overcome that.

Introduction and Overview

Unit 1a-7

© 2007 IBM Corporation7 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

A “Service”

A discrete set of business or technical functionality that can be identified, has
a defined set of input and output, and is reusable

An example of a “Service” …

User
“Consumer”

Service
“Producer”Input

Output

Discrete – can be contained within a definite and known “fence”
Identified -- it’s recognized as a service and people acknowledge it as a service
Defined – the input and the outputs are known and understood
Reusable – is not just a one-time thing

There’s nothing revolutionary about this. What’s different is that we’re coming to a point
where improvements in technology have allowed us to do this better than before:

• Settled on a universal and common networking protocol -- TCP/IP
• Networking bandwidth is increasingly available, cheap and reliable
• The idea of “industry standards” has matured and is embraced rather than resisted
• Java as a platform-unaware language has opened up a new world of interoperability

In
te

rf
a

c
e

Implementation

Exactly how the service
is implemented behind

the interface doesn’t

really matter to the
consumer of the service

So we get to the point where we can introduce the concept of a “Service.” We’ll use this for the
rest of this workshop. The top of the chart offers the definition, with further explanation about what
some of the keywords are relating to. For now, let’s focus on the picture.

A “Service” is a something that someone else can use … or in computer language, “invoke.” To
use or invoke a service, the requester (or service “consumer”) needs only to know that the service
exists, where it’s located, and what’s required to invoke it and what can be expected in return. In
this sense the service has a kind of standardized, defined set of input and output requirements.

Note: a service does not need to be a computer program. It can be a human behind a desk who does
something on your behalf. But for the purposes of this workshop, we’re focusing on a service being a
computer-implemented thing.

The key to this is that the actual implemention of the service -- what goes on behind the interface,
in other words -- is something the service consume doesn’t care about. I don’t care how the Post
Office gets my letter from here to there … all I know is that I have to put an address and ZIP code
on the envelope and turn it over to them.

There’s absolutely nothing revolutionary about this. We’ve been striving to achieve something like
this in the computer industry for decades. (Subroutines are a kind of “service,” the whole
client/server thing had elements of this in mind, distributed objects and remote procedure calls
also share this basic notion.) What’s different is the times in which we live -- things have come to
be that facilitate SOA much better -- a common networking protocol (TCP/IP … you can’t begin to
imagine how important it is that debate is over); cheap and readily available bandwidth; the
coming of age of industry standards … not only the standards but the idea of embracing standards
rather than seeing them as a threat; and finally Java as a kind of common runtime language. All
have made the adoption of SOA much easier. Let’s now look at an example of a service.

Introduction and Overview

Unit 1a-8

© 2007 IBM Corporation8 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

An Example -- Currency Exchange

IBM’s Travel Expense Reimbursement application does not do its own foreign
currency conversions … it uses an external service for that:

Another Example of a “Service” …

Currency = $US?

In
te

rf
a

c
e

Implementation$US

No

Yes
Internet

[£100,$US,15-June]

[$196.00]

For this to work, several things need to be in place:
• IBM application needs to know about the service and where it is located
• IBM application needs to know the interface requirements: parameters, sequence, format

Could IBM have coded an internal subroutine to do currency conversions? Sure. But very good
converters exist on the web and in this case IBM took advantage of them.

Understanding what services are available, where they’re located and what
interface requirements they have is a key aspect of SOA. More coming.

IBM has a travel expense application used to file for reimbursements. When a foreign currency is
involved, that application needs to know the exchange rate so it can convert the foreign currency
to $US. Originally that exchange was left up to the person filling out the reimbursement report --
we often took a guess, relying on some memory of what exchange we got at the airport currency
exchange booth.

A few years ago the designers of the TEA application realized that there are websites out on the
Internet that provide real-time foreign currency exchange rates. Rather that assuming the
guessed-at exchange rate is correct, the application designers decided to go out to the web and
get the actual exchange rate to validate the value provided by the employee. So the expense
reimbursement application was updated to send a URL to some website, fetch the actual
exchange, and save it in the expense report’s information.

This couldn’t have occurred by magic. For this to work, several things needed to be in place:

• The expense application developer needed to know that a foreign currency exchange website
existed and where it was located.

• The developer then needed to know what that website required as input parameters. For
example, a currency exchange application is going to need, at a minimum, the “from” currency
and the “to” currency, the amount of the “from” currency and probably a date as well because
currency exchange rates fluctuate all the time. Further, the developer needed to know what to
expect back.

This idea of knowing about a service, its location and its interface requirements is a key element
of SOA. We’ll see a lot more of that when we get to discussions of Web Services.

Introduction and Overview

Unit 1a-9

© 2007 IBM Corporation9 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Another Example -- CICS Web Service

We’ve not really defined what a “web service” is … but for now be aware that
CICS has the ability to front-end existing CICS programs with a web service
interface … “exposing” the CICS program as a service:

Both a technical and business concept …

CICS Web
Service

Front-End

Existing
CICS

Program

CICS V3.1

Network
Web Service

Client
Program

CICS program
unchanged

Appl

3270EXCI

Traditional
access
unaffected

New front-end
allows service

oriented
invocation

SOAP/HTTP

Key point is that traditional CICS program can be turned into a message based
“service” which can then be used by “service consumers” in your network

In
te

rf
a

c
e

Here’s another example of a “service” … this time it’s an existing CICS application that’s been
exposed as a “Web Service.” We’ll cover what exactly a “Web Service” is in more detail in a bit …
for now, just understand that it’s a service with an industry standard format for describing the
interface requirements and the exchange of data.

So, imagine an existing CICS application that you use today. Perhaps it’s being used by other
applications using the External Call Interface (EXCI) of CICS, or perhaps it’s being used by people
at traditional 3270 terminals. But now you want to make it available to a “service consumer” as a
standard “Web Service.” What to do?

In CICS V3.1 there is a support for developing a Web Service “front-end” to such applications.
This “front end” is what implements the interface -- the input and its requirements; the output and
what it produces -- and then turns and works against the existing CICS application. A Web
Service client out on the network somewhere needs only know that this new “Service” is available,
it’s location, and how to invoke it. The Web Service client definitely does not need to format a
COMMAREA. Nor does the Web Service client need to know anything about the real CICS
appliction behind the Web Service interface.

There are several key points here:

• The existing CICS application remains unchanged. This is another piece of code out front of it that
implements the Web Service interface.

• Existing users of the CICS application continue to use it as they have all along.

• The Web Services client may now start using the CICS application as a “service”

• Any new needs to use that CICS application may now start using it as a service as well

An thus we’ve created a discrete, reusable service with a defined set of input and output. And
we’ve done that without disrupting existing users. And we’ve laid the groundwork for new things
to use the service without having to “hardwire” them into the existing CICS application.

Introduction and Overview

Unit 1a-10

© 2007 IBM Corporation10 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Two Perspectives of the Same Thing

Depending on who you are and how you approach this, the concept of a
“Service” takes on different meanings

Service Oriented Architecture …

Business manager or business consultant

IT specialist or architect

Receiving Stocking
Order

Creation
Fulfillment Shipping

• Match to Purchase Order
• Quantity Reconciliation
• Initiate payment to vendor

• Reserve stocking location

• Create order record
• Reserve stock quantity

• Create order pick ticket

• Create shipping label
• Update order record

View business process as a set of functional
services linked in a specified flow

View as a set of computing actions – programs, subroutines, transactions, etc.

Both important! This is why you often see discussions that
cross over from technology into business consulting language

This is where discussions of process re-
engineering and business alignment to
services orientation comes from. More
business consulting than I/T architecture

At this point we need to pause and point out that “Service Oriented Architecture” means different
things to different people. It depends on what perspective one takes. To the IT specialist or
architect, they’re going to view “services” as IT-related components. So to them the hypothetical
shipping and receiving application flow is represented by a series of IT components -- a service to
match a received shipment to the purchase order; another service to make sure the quantity
received is equal to the quantity ordered; another service to reserve the stocking location in the
warehouse, etc.

But to the business manager or consultant, they’ll be viewing it not necessarily as computer-
related application functions, but discrete functional components of the business.

Both views or perspectives are important, and they serve different purposes. Both will be part of
any SOA discussion, depending on who you’re talking to. We bring this up because this is why
you’ll see many write-ups on SOA switch between pure computer talk to business-speak, and
back again.

Now we can try to define what “Service Oriented Architecture” means.

Introduction and Overview

Unit 1a-11

© 2007 IBM Corporation11 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Service Oriented Architecture

Approaching this incrementally …

Service oriented architecture (SOA) is a business-
driven IT architectural approach that supports
integrating the business as linked, repeatable

business tasks, or services.

From www.ibm.com:

Personally, I don’t think the exact definition is all that important. More important:

• You understand the concept of a “service”

• You understand the implied value of a loosely coupled “service” rather than a tightly coupled
connection to another application’s interface … flexibility

• You understand that “SOA” is a path towards the use of more and more services in your I/T
architecture … not a “thing” or an “all-at-once” proposition

• You understand that there’s more to it than just services. We have yet to introduce the
Enterprise Service Bus and the function within it. Much more to come.

This definition comes from the www.ibm.com website. It’s as good a definition as any. And there
are a lot of definitions floating around out there.

Author comments:

It’s easy to get too caught up in the wording of such definitions. Having a definition is important to
put a “stake in the ground,” but no definition is perfect and to the extent trying to make sense of a
definition causes your understanding of SOA to be hindered, it’s best not to rely too much upon
any one definition.

The key, I think, is this:

• First and foremost, you have a handle on what’s meant by a “service.” A service is a discrete function
with a defined set of input requirements and a defined set of output results.

• You keep an eye on what’s important here -- what a “loosely coupled service architecture” provides is
an increase in flexibility. Changes to the function behind the interface won’t affect users of the service if
the interface itself hasn’t changed. And changes to the interface itself can be made if the consumers of
the service have a programmatic way of understanding the change and taking it into account. (This last
part gets to the question of “binding” to the service and understanding its requirements. Web Service
clients use something called a “WSDL file” to do this. We’ll discuss this in more detail later.)

• You understand that SOA is not really a product, or a big switch that auto-magically transforms your
company overnight. It is more than anything a philosophy or mindset; one which is implemented with
computer stuff we’ll describe here.

• FInally, you understand that SOA is more than just services. We’re starting there as the first key
concept to grasp. But we have more to bring into the picture … the ESB, the notion of a service
repository, the notion of process coordination (known as “choreography”).

If you keep those essential points in mind, you’ll be okay as you see different definitions of SOA
float by.

Introduction and Overview

Unit 1a-12

© 2007 IBM Corporation12 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The Vision in Picture Format

IBM’s Reference Architecture …

If we take that definition and draw a picture, we see something like this:

In
te

rm
e
d

ia
ry

 m
e
s
s
a
g

e
 r

o
u

ti
n

g
 a

n
d

tr

a
n

s
fo

rm
a
ti

o
n

 a
s
 n

e
e
d

e
d

An accessible “registry”
where information about all

this is maintained

Requesters of
Services

Providers of
Services

Services planned and
implemented so asset

re-use is achieved.

Requesters all “see”
the intermediary

function (the ESB) as
the location of the
services. The ESB
resolves the actual

location.

The whole thing
planned out and

managed in a
disciplined manner,
aided by tools and

technology

Using the definition from the previous page, we can draw a picture that looks something like
what’s shown here. A set of “service requesters” access their desired services through the
intermediary function (which, as you’ll see, is the Enterprise Service Bus, or ESB), and the
requests flow to the service providers.

The services are designed in such a way that re-use is achieved to a greater degree than before.

Flexibility is achieved because the ESB is acting as a “shield” of the actual service implementation
behind it. Changes to a service implementation can be hidden from the population of service
users, some of which you may not have control over.

This environment is then managed and controlled in a systematic and logical manner using
practices of discipline, aided by technology and tools.

This is the vision … at a high level.

IBM’s picture of this is captured in the IBM Reference Architecture …

Introduction and Overview

Unit 1a-13

© 2007 IBM Corporation13 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The IBM SOA Reference Architecture with Product Mappings

This is another way to show the architecture and products mappins. This is a
more logical view rather than the physical view from previous page.

Approaching SOA incrementally …

From “Getting Started with WebSphere Enterprise Service Bus V6” Redbook
redbooks.ibm.com

SG24-7212

Our focus

The picture for “SOA” used in this presentation is a somewhat simplified illustration. The IBM
SOA Reference Architecture presents a much more comprehensive view. It’s another way to look
at this subject.

For this presentation we chose to limit our focus so we could drill down a little bit more into some
of the technical details. That’s not to say the stuff we don’t focus on is unimportant … it’s just that
time dictates we limit the scope a bit.

The picture above came from the Redbook SG24-7212, which has an excellent writeup on the
whole of SOA. It’s a good book to download.

One thing we wish to emphasize … we are not talking about a “rip and replace” strategy. We
recognize the need to approach this imcrementally.

Introduction and Overview

Unit 1a-14

© 2007 IBM Corporation14 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Incremental Implementation

SOA does not imply ripping up your entire infrastructure and replacing it with
something new. It can be done incrementally:

Building composite applications …

Application Application Application

ApplicationApplicationApplication

Imagine this is a logical representation of your existing application architecture …

You’ve identified two functions you think would make
good reusable services

• Check inventory function within application

• Create shipping label function within application

Develop service interfaces for these … exposing
them as services for re-use by other applications

Application Application Application

ApplicationApplicationApplication

New
Application

Overly simplified?

Maybe a little …but the underlying
concept is sound. Recall the CICS

example from a few charts ago

Existing interfaces unchanged

A big trap in this SOA thing is thinking it’s a massive “rip and replace” operation. It can be, if as a
company you’ve decided to re-engineer your business around the concept of reusable services.
Some companies have done just that with success. But it doesn’t mean all companies must do
that. Many are opting for the other approach -- a slow, gradual implementation. And this is done
by identifying existing things that would make good “reusable services” and providing a “service
interface” to them.

The picture above shows a slightly different representation of the “complex interconnected
application architecture blob” from before. Now imagine you’ve identified two functions you wish
to use as a pilot project for service implementation -- the “Check Inventory” function an the
“Create Shipping Label” function.

The notion here is that you could develop the “service interface” for these two, without affecting
others or the complex structure as a whole. (How exactly one develops a “service interface” is
something we’ll cover in the next unit for Web Services, and in the ESB unit when we describe
WESB and WMB, the two products IBM has that implements the ESB concept.)

With the service interfaces developed for “Check Inventory” and “Create Shipping Label,” now
some new application that needs those two functions may simply “invoke the service” to get what
it needs. It doesn’t need to be “tightly coupled.” It is now “loosely coupled.”

Overly simple? Sure … but it helps illustrate the key concept of starting with an identified set of
discrete services and exposing them as services without affecting your existing infrastructure.

Let’s say you have a bunch of services created. What’s the big deal in that? Well, it then allows
you to start building “composite applications” -- applications that invoke a string of different
services to perform its functions.

Introduction and Overview

Unit 1a-15

© 2007 IBM Corporation15 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Composite Applications Built on a String of Services

Extending the concept … once a library of reusable services has been built,
future applications can be built by stringing services together:

A real-life example …

Start

Check
Inventory

In Stock?

Reserve Item
for Sale

Process
Backorder

Request
Stock

Replenish

Application A
Application B

Application C

This illustrates the
benefits of re-use.

Again, imagine you’ve built up an inventory of reusable services, all with defined interfaces. Now
you’re getting ready to construct a new application (we’ll call it “Application A”). Rather than
rewrite the same function over again, or do “tightly coupled” things like link-edit the other function
into the application or make sure some CLASSPATH is updated, all you need to do is code the new

application to go out and invoke the services in the order it needs. The whole application probably
won’t be just invoking one service after another, but hopefully a large portion of it will be that.

But here’s the value -- imagine you’ve got two other applications -- B and C -- and they also need
to use some of the same services as Application A. All those applications would need to do is
invoke them. Application A doesn’t need to know about B or C at all. Further, if you ever had to
go into those two services that all the apps are use -- “Process Backorder” and “Request Stock
Replenishment” -- and tweak the internal implementation, applications A, B and C remain
unaffected … provided the interface remains as it was.

This is good … the connectivity has been decoupled a bit. This helps illustrate the benefits of
reuse.

Introduction and Overview

Unit 1a-16

© 2007 IBM Corporation16 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Real Life Example of a Composite Service Application

Illustration of point-to-point …

IBM’s internal “Online Travel Reservation” invokes a string of external
services to locate flight, hotel and car availability:

Key in dates,
destinations,

etc.

The application
then invokes a

list of services to
determine

airfare, which
flights have
availability,

which hotels are
available, etc.

Those services are
standard industry

services; others use
them too.

This application is coded to go to specific locations for specific services.
That’s fine; it works … but it’s still a point-to-point architecture

Inside of IBM we use a tool called “Online Travel Reservations” (OTR) to make our travel plans. It
has a Java client component that talks to a server-based component, which then goes out and
gathers information from various external services such as airlines, hotels and car rental
companies. We provide information about dates and times and locations, and it goes out and
looks for flights and hotels that meet our criteria.

It should be obvious that IBM does not maintain its own database of flight schedules and seat
availability or whether a hotel is sold out. It gets that information from external systems that are
services to IBM’s travel application.

Note: whether it’s a “Web Service” I do not know.

It does this information gathering in a sequential fashion, as the captured bitmap illustrates. So
this application is really a composite application; one that invokes a string of other services to
fetch in the information it needs. The services being invoked are not “for IBM’s use only” …
they’re standard industry services made available to others who need the same type of
information.

This application knows about the location and interface requirements of those services because
the application developer researched it and made sure the OTR application worked with it. That’s
fine … it works. IBM’s OTR is loosely coupled to these services but discovery of where these
services reside is most likely not dynamic, and the interface requirements are most likely statically
maintained by the application.

Note: I’m speculating here … I do not know exactly how this application is coded. It’s been
around for several years and my guess is it does not yet use things like Web Services or an ESB
to locate the services. One day it will.

Introduction and Overview

Unit 1a-17

© 2007 IBM Corporation17 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Services Alone Does Not an SOA Make

Our picture is still point to point:

Introducing the “Enterprise Service Bus” …

Application

Application Application Application

Application Application It’s a good start … the applications are more loosely
coupled. The implementation are “hidden” behind
their service interfaces.

But to realize even more flexibility, what we need is a
kind of universal exchange bus that takes care of
connections.

Application

Application Application Application

Application Application
Here, requesters of services do not need to know
where the service is located; they simply connect to
the “bus.” The bus then routes to the service.

Ideally, this bus would do other things -- transform
protocols, route based on message content, enforce
quality of service, etc.

This picture is still a bit abstract

If we revert to the illustration model we used before, what we now see is that our applications are
all implemented with a service interface. That’s a good start … the applications are more loosely
coupled to one another. The complexity of the implentation behind the interface is hidden, so now
all requesters need to know is where the service is located and what its input and output
requirements are.

But the connectivity is still point-to-point. And when your enterprise has hundreds or thousands of
services, and thousands or tens of thousands of requesters, then the picture becomes very
complicated again. What we need is some kind of very smart, universal exchange bus that sits in
the middle of everything and takes care of connecting requester to provider.

The lower picture illustrates this in the abstract. Now rather than a maze of interconnections, we
have this “bus” running down the middle. Requesters connect to the bus and the bus routes the
message to the service. All anyone needs to know about is how to connect to the bus; the bus
does the rest.

And in an ideal world, that bus would do more than just route messages … it would have the
ability to route based on message content; to transform the messages if needed so applications
that couldn’t normally talk to one another now could; to enforce quality of service rules; and to
provide security services to everyone.

This “ideal world” thing is the “Enterprise Service Bus,” or ESB for short.

The picture above is a bit too abstract. Let’s make it just a bit more real.

Introduction and Overview

Unit 1a-18

© 2007 IBM Corporation18 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Command Control Mapped Onto Existing Network

Go back to first picture …

The “Enterprise Service Bus” is really additional command and control
intelligence added to your physical network. Implemented in middleware:

Service
Consumer

Service
Consumer Enterprise Service Bus

Middleware that provides key
function in an SOA environment:

• Messaging services
Support different message types;
content-based routing; guarantee
message delivery.

• Management services
Monitor performance; enforce SLA

• Interface services
Support web services standards and
provider “adapters” for non-standard
interfaces

• Mediation services
Transform messages between
formats.

• Security services
Encryption, authentication,
authorization

This concept can be slippery …

• Function mapped onto existing network, not a replacement of the network with
some kind of separate “bus”. However, messages are handled inside
middleware that implements the ESB.

• Not necessarily a single middleware product; multiple products may be
combined to build up ESB functionality

• It might be best to avoid strict definitions of what constitutes and ESB.
Perhaps a focus on the major function “types” to the right is better way.

Necessary things to
keep order and keep

this from being chaos

A more “physical view” of it:

Here we see the “Enterprise Service Bus” in a more physical representation … as function
mapped on top your existing network. Service consumers and service providers connect to this
existing network. When something requests a service, this request flows to the middleware that
implements the ESB, and that middleware then determines where the service is located and
routes the message there.

But the ESB does more than just simple routing. It also does the things mentioned in the bullet list
on the right side of the chart. We’ll see how those things come into play when we take a closer
look at the products that implement the ESB -- WebSphere Enterprise Service Bus (WESB) and
WebSphere Message Broker (WMB).

We need to be a bit careful here … the concept of the ESB can be a bit slipperly.

• We’ve already made the point that the ESB is function that maps onto your existing network,
and that it’s function implemented in middleware. It is not a new physical bus, but rather a
logical bus on top your existing real network.

• Messages that are handled by the ESB do flow up into the middleware product that
implements the ESB and then back out again.

• It’s not necessarily a single middleware product. Multiple products may be involved.

• Just like the definition for “SOA,” a strict definition for “ESB” might be something you avoid.
There are a lot of different definitions out there. For now, just think of the ESB as function that
brings service requester and service provider together, and provides a higher level of
command and control over the whole process.

Introduction and Overview

Unit 1a-19

© 2007 IBM Corporation19 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Our First Picture

If we return to the first picture of this presentation, we now see the role of the
ESB as a collection of function mapped into a service oriented environment:

Enterprise Service Bus

SOA
Registry

Workflow
Engine

Service
Broker

Corporate Network

CICS IMS DB2 MQ WAS OtherService
Consumers

Service Providers

Those boxes on top the ESB …

Outside dashed line
represents “SOA”.

Definitely not “a thing”

ESB a set of key functions.
Implemented with middleware.

Not necessarily a single “thing”

We’ve not yet explored
how these systems can
be “service providers”

A consumer can be a person or
a program. For this discussion
we generally consider a service

consumer as a program.

Additional functions that
complement the ESB to
extend function of SOA

Let’s now cycle back to our starting picture and see how the ESB fits into the overall scheme. As
we stated, the ESB is a set of function that’s mapped onto your existing network. It is
implemented as middleware that is made available to service consumers and service providers,
and is the means by which consumers gain access to services offered.

The three additional boxes you see above the ESB represents additional function, above and
beyond the essential functions of the ESB, that extends the picture to be more “SOA.” SOA itself
is definitely not a “thing” or a single product, but rather a collection of functions as well as an
overall philosophy of orienting the architecture around the concept of reusable services.

Let’s take a slightly closer look at those boxes on top the ESB …

Introduction and Overview

Unit 1a-20

© 2007 IBM Corporation20 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Registry, Workflow Engine and Service Broker

Let’s briefly look at the additional functions we mentioned on the previous
chart:

Enterprise Service Bus

SOA
Registry

Workflow
Engine

Service
Broker

Corporate Network

Another way of looking at this … more comprehensive …

Service Broker
• Coordinates the matching of request

with the associated service
• Typically will work with the ESB to

handle the lower-level connection
protocols

• Likely to see this as function
imbedded in the middleware that
implements the ESB

Workflow Engine
• Executes defined “business

processes” -- strings of services and
non-I/T activities that constitute a
defined process within company

• Invokes “linking code” as needed
between services

• Capable of instituting exception
processing as needed

SOA Registry
• Maintains information about the

services:
• Interface descriptions (WSDL)
• Non-standard interface descriptions
• “Meta-data” such as relationships

between services, service level
agreements, governance rules

These are functions … not necessarily “products.” But in some cases the functions are
implemented as products. Let’s look at how these things are physically implemented.

Some pictures of the SOA solution include additional functions “above” the ESB. For the
purposes of this presentation we’ll show three: the Service Broker function, the Workflow Engine
and the SOA Registry. These are functions, not necessarily products … but in the case of IBM
some products do implement them.

• Service Broker -- the function that facilitates the matching up of requster to provider. This is
a pretty fundamental function, and in most cases this function will be part of any middleware
product that implements the ESB.

• Workflow Engine -- this is the function that helps coordination -- or “choreograph” -- the flow
of higher level business processes by executing application processes and routing work items
to human-oriented tasks … all in a “flow” that you designate. When some other code is
needed to prepare the work to flow from one station to the next, this function can invoke that
code to do the necessary work.

• SOA Registry -- when the number of services you have in your “library” grows, it will be
helpful to have a function to keep track of it all … to store the necessary artifacts in a single
place … to be able to query for what services are available. The SOA registry is just such a
thing.

Introduction and Overview

Unit 1a-21

© 2007 IBM Corporation21 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WebSphere Message Broker -- an Implementation of an ESB

An example of an IBM middleware product that implements some of the
functions we mentioned on the previous chart is WebSphere Message Broker

Service
Consumer

Service
Consumer

WebSphere Message
Broker

Message
Flow

WebSphere Message
Broker is an execution

environment for something
called a “Message Flow” …

a program that takes
inbound messages,

performs transformations
you define, and routes to

the desired service

(We have much more to say about
WebSphere Message Broker)

Some key points to keep in mind:

• WebSphere Message Broker is implemented as a series of address spaces on z/OS. It’s based on MQ.

• WebSphere Message Broker is not the only IBM product that implements an ESB … WebSphere Enterprise
Service Bus and WebSphere Process Server do as well.

• Not all the SOA functions we mentioned earlier are implemented in Message Broker. It does act as a service
broker, but it is not a service registry and repository. But it is capable of working with IBM’s Registry product

Other IBM Products and SOA …

In an attempt to make this more “real” for you, here’s a picture of an actual IBM product that
implements the “ESB” (as well as the “Service Broker” function). The product is WebSphere
Message Broker (WMB). It’s not the only ESB product … another called WebSphere Enterprise
Server Bus (WESB) also provides the ESB function, though with slightly different capabilities.
We’ll cover both in much more detail in the third unit of this workshop.

WebSphere Message Broker is a really an execution environment built on MQ. It runs a special
kind of program called a “Message Flow” that determines the way a received request for a service
is handled … from its routing to the service, to any message content augmentation or
transformation you desire, to switching between different protocols … the message flow is code
that runs inside WMB that does this.

We have a whole lot more to say about WMB (and WESB) later.

But for now, let’s go with a few key points:

• WMB is implemented as a series of z/OS address spaces. It’s based on MQ and has as part
of its structure an MQ queue manager.

• Like we said, WMB is not the only IBM product to implement the ESB. WESB does as well.

• WebSphere Message Broker implements the essential ESB functions as well as the service
broker function … but not the Workflow Engine or the Registry function. Those are separate
products which we’ll see in a bit. However, WMB works with the products that implement
those functions.

Let’s look at what other IBM products are part of this picture …

Introduction and Overview

Unit 1a-22

© 2007 IBM Corporation22 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Other IBM Products and SOA/ESB

Back Again to our first picture … this time with IBM products mapped onto the
picture:

The role of standards in the SOA/ESB field …

Enterprise Service Bus

SOA
Registry

Workflow
Engine

Service
Broker

Corporate Network

CICS IMS DB2 MQ WAS OtherService
Consumers

Service Providers

WebSphere Service Registry
and Repository (WSRR)

WebSphere Process
Server (WPS)

WebSphere Message Broker
(WMB)

WebSphere Enterprise Service
Bus (WESB)

Remember … other products beyond this. Recall
the IBM SOA Reference Architecure picture.

Going back to our original picture one more time and let’s map other IBM products to it. We’ve
already seen WebSphere Message Broker filling the role of the ESB and Service Broker. We
mentioned WebSphere Enteprise Service Bus (WESB) doing the same. The Workflow Engine
function is implemented with WebSphere Process Server (WPS). And the SOA Registry function
is implemented with the WebSphere Service andRepository (WSRR) product.

Note: this is not the complete list of IBM products that play in the SOA space. There’s a whole
bunch of products -- particularly in the realm of development, modeling, monitoring and
governance -- that also play in this space. If you go back ot the “IBM SOA Reference
Architecture” picture from a few charts ago, we see that there’s much more to this than just the
ESB and the three functions we’re highlighting. Again, we’re limiting our picture so we can focus
on the core of this.

Introduction and Overview

Unit 1a-23

© 2007 IBM Corporation23 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The Role of Industry Standards in the SOA/ESB World

It’s critical. It’s what enables this whole thing to be possible. Lack of open
standards -- and general resistance to standards in the past -- is what inhibited
this earlier.

Service
Consumer

Service
Consumer Enterprise Service Bus

Many existing standards
already in place:

• TCP/IP
• SOAP, HTTP
• Java, JMS, J2EE
• RMI/IIOP, JAX, JMX … etc.

Many other standards
under development

• WS-* standards from WC3 and
OASIS standards bodies

• Others

Standards Development is an evolutionary process. We often implement standards
into products as they develop ... update later as standard is updated.

(Example: WebSphere Application Server -- constantly implementing new standards as they’re developed)

IBM is deeply involved in standards development and is committed to open standards
(Wasn’t always the case, but it sure is now)

The role of System z in this …

Industry standards play a key role in all this, all up and down the chain. You may not realize how
many industry standards you rely upon on a daily basis -- TCP/IP, for example, is an industry
standard that plays a crucial role as a unifying network protocol for the transfer of data. Higher up,
we see such standards as SOAP (for Web Services … more on that in the next unit), HTTP (as a
web services exchange protocol) and Java (as a common programming language across
platforms). Industry standards are what is allowing this SOA thing to open up and flourish.

There are many more standards, some in the process of development. It’s important to realize
that industry standards development is an evolutionary process. As standards get updated, IBM
implements changes in their products. Also, please understand that IBM is deeply committed to
open standards, and in fact is deeply involved in the development of many of those standards.
There was a time, perhaps a decade or more ago, when IBM’s commitment to open standards
wasn’t so solid. But IBM today has demonstrated over and over again in the way we’re embracing
standards all across our product line.

Introduction and Overview

Unit 1a-24

© 2007 IBM Corporation24 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The Role of System z In the SOA/ESB Environment

Is there any reason System z can’t play in this space?

Web Services …

Capable of connection to IP Network?

Capable of running Java?

Capable of supporting open standards?

Proven and reliable platform for enterprise?

Products exist to implement SOA/ESB on System z?

���� ����

���� ����

���� ����

���� ����

��������

Yes No

This is the focus of this workshop -- the revealing of the products that exist
on z/OS and how they work. It is our wish you come to see the value of
SOA and ESB on z/OS by our revealing the “reality” of these solutions.

This chart tries to lead you to a conclusion we hope is obvious -- that the System z platform is
perfectly capable of hosting open standard SOA and ESB solutions. The platform is capable of
doing the essential things related to this task. The question is really whether IBM has produced
products for the platform. And that is the focus of the workshop.

Introduction and Overview

Unit 1a-25

© 2007 IBM Corporation25 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The Internet and Program-to-Program Communications

The Internet provided a universal networking fabric. Browser to server
communications are common. What about program to program?

Web Services and the SOAP protocol …

HTTP
Server

Browser

HTML

HTTP

TCP/IP

Program

????

????

TCP/IP

What the industry settled
on as the standard

Program

Internet

A lot of possibilities here. In order to promote
wide spread adoption, the industry knew that it

had to create and adopt standards
SOAP

HTTP

TCP/IP

Bare-bones basics of “Web Services”

The adoption of IP as the standard internet-network communication protocol created a universal
networking fabric (meaning nearly everyone had access to everything). One of the very first
things people did with this was transfer files back and forth. (The FTP protocol maps on top of the
IP network.) The next big thing to come along was web browsing, which made use of an
emerging standard called HTML. HTML defined the page layout and the content. HTML is
carried back and forth using the HTTP protocol, which defines how a browser interacts with the
web server. All that is then transported at the network layer using TCP/IP, the universal network
fabric.

Program to program communications can also take advantage of the universal network fabric.
And there are a lot of different ways one program can invoke the services of another. To prevent
a fragmented industry, the various players got together and set about crafting a set of standards
for the interaction of program to program over the common TCP/IP fabric. The standard is
something called “Web Services” and it encompasses a broad range of standards. We’ll focus on
a subset that gets to the heart of the matter.

The lower left of the picture shows the very barest of essentials about Web Services. SOAP --
Simple Object Access Protocol -- defines a layout of XML for one program to communicate with
another. That SOAP “envelope” (think “file”) is sent over the HTTP protocol. (JMS is also defined
as acceptable.) And all that rides on the TCP/IP network.

Let’s look at how this works in relation to our earlier definition of a “service.”

Introduction and Overview

Unit 1a-26

© 2007 IBM Corporation26 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Web Services and SOAP

An open standard definition for program-to-program interaction over a
network. We can easily map it to our picture of a “Service” earlier:

Traditional Web Services diagram …

Input request,
formated in XML using

the “SOAP” format
protocol.

Service provider opens up XML
document, reads the request

parameters and does the work.

Service
Requester

Request

Response

In
te

rf
a

c
e

Implementation

Service
ProviderHTTP

HTTP

XML SOAP “envelope”
sent over HTTP

(JMS also possible)

Service provider packages
response in XML formatted to

SOAP standards

XML SOAP “envelope”
sent back over HTTP

(JMS also possible)

Service requester opens up
XML document and reads

the response values

Really an interface standard. It says nothing about how workings of service behind the interface
must be implemented. That’s a key element of SOA as well.

Now we’re going to turn our attention to Web Services, which is an important element of SOA. A
Web Service is a “service” just like we described before, but Web Services is built on an open
standard definition.

We can use the same picture of a “service” we used before. But this time we’re going to map
Web Services definitions onto it.

• The service requester passes to the provider a standard-format message with its request
inside. That message is formatted in something called SOAP (Simple Object Access
Protocol) and is sent over standard HTTP. (JMS is also possible; more later.)

• The service provider receives the SOAP envelope (which is standard XML) on its HTTP port.
Because the service provider is implemented as a standard Web Service, it knows how to
open up the SOAP XML envelope and read the request information contained inside.

• The service provider then takes the request -- whatever that may be: ZIP code lookup,
foreign currency exchange, credit application check, account balance update -- and does the
work behind the scenes. Remember the key to services is the hiding of the implementation
details behind a defined interface. How the service does its thing is not of interest to the
client.

• When the answer is ready to go back to the client, the provider packages the answer up in a
response SOAP envelope. It then sends the message back to the client. The client, which is
serving as a web services client, knows how to crack open the SOAP XML and get its answer.

So in reality Web Services is really an interface standard. It defines the format of the
request/response message (the SOAP envelope) used by the requester and the provider.

You may be more familiar with the more traditional way of explaining Web Services …

Introduction and Overview

Unit 1a-27

© 2007 IBM Corporation27 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The Standard “Web Services” Diagram

Perhaps you’re more familiar with this diagram, which is commonly provided
to explain “Web Services”:

Relationships …

UDDI

Requester Provider

Publish WSDLLocate and retrieve WSDL

Request/Response
The area shaded

in gray is the
same thing as the

picture on the
previous page

Univesal Description, Discovery, Integration

A repository for WSDL XML files

The vision of SOA seeks to make this far more dynamic

WebSphere Service Registry and Repository (WSRR) has a
broader data model, and is a fuller-function repository

Truth is, most implementations
don’t make use of UDDI. Most
implementions employ a “static
binding” … WSDL supplied directly
to client.

Notion being that when service deployed,
WSDL published to UDDI. Clients browse
UDDI and retrieve WSDL for info on service

This is the more traditional diagram illustrating “Web Services”. This diagram has the requester
and provider just like we’ve already shown you, but it includes something called UDDI -- Universal
Description, Discovery and Integration. It’s a standard for the storing and retrieving of information
about Web Services, including the storing and retrieving of the WSDL file we discussed. The
picture is saying that when a service is made available, the WSDL is “published” (or stored) in the
UDDI server. Then requesters can query the UDDI server to get the WSDL, read it, and thus
know how to connect to the service.

The reason why this picture is a bit challenging to grasp is that very few people actually use a
UDDI server. The function does exist … it’s just that most people have implemented Web
Services with what’s called “static bindings” -- that means the requester has been configured with
the WSDL file manually, and that’s how it knows about the service’s requirements. If the service
were to change in some way it would mean the WSDL file would need to be updated. Static
binding is exactly that -- static. The vision for the future is for a more dynamic binding mechanism
… something more along the lines of what UDDI is doing.

For IBM’s SOA picture, the role of a “repository” is going to be filled by something called
WebSphere Services Registry and Repository (WSRR). We’ll go into that in a bit more detail in a
later unit. UDDI will continue to exist … it’s just that WSRR is going to do that function plus much
more.

Introduction and Overview

Unit 1a-28

© 2007 IBM Corporation28 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Web Services, SOA and ESB … All the Same Thing?

No, not really. It’s possible to have one and not the other. Recall the old
“Venn Diagram” tool from high school math:

Web Services

Enterprise Service Bus

Service Oriented Architecture

A B C D
E

Caution!

This is a thought exercise
and discussion tool

This is not some precise
statement of SOA doctrine
In other words, it’s open to some debate

and disagreement

A Web Services without being SOA
Very possible. SOA is a architecture and mindset. You could have a few web services apps without really being SOA.

Web Services and SOA without ESB
Early on this may well be the case. You may commit to the concept of SOA and be working in that direction but may not yet
have implemented an ESB.

Web Services, SOA and ESB
This is the goal we’ve been describing … though this is not necessarily “better” than D.

ESB and SOA without Web Services
Other protocols, such as JMS or native MQ may be the underlying messaging format you use. WebSphere Message Broker
can take those as input and transform to a different output protocol as needed.

ESB without SOA
ESB implemented as application integration without any other consideration of SOA.

B

C

D

E

WebSphere as foundation …

The question always comes up … “What’s the relationship of SOA, ESB and Web Services?” To
answer that, we’re going to go back to high school math class and resurrect the “Venn Diagram.”
In the picture we show, the outer box (yellow, if you have this in color) is SOA. Web Services is
represented in light blue and the ESB in green. Under the picture you see arrows indicating points
of intersection. Let’s walk through them.

• A - Web Services without being SOA … very possible. It could be a matter of degree,
meaning only a few web services are deployed but in general not much of a service
orientation. Or it could be a lot of web services, but all point-to-point and statically bound.
Some might argue that is SOA, but many would argue it is not.

• B - Web Services and SOA … the likely case early on in the adoption cycle. At this point
there may not be any ESB in the picture, but the organization is thinking along those lines and
the up-front work is being done to position the organization for SOA.

• C - Web Services, SOA and ESB … this is one of the goals we’ve been describing. If an
organization is committed to open standards, and Web Services is the services
implementation that will be used, then this spot -- C on the chart -- is where they’re going to
end up.

• D - SOA and ESB, but no Web Services … very possible. This is what WebSphere
Message Broker is designed to do -- provide SOA for non-Web Services protocols and
formats. Be careful -- Message Broker can also do Web Services, so we’re not trying to imply
its role is just non-standard stuff. Most likely people will have a bit of both -- Web Services
and non-standard protocols being handled by WMB.

• E - ESB but no SOA … the Message Broker product has been around for a while. It started
life as a way to integrate divergent applications. Some are still using it for that purpose. It fills
that role very well … but that by itself is not SOA.

Introduction and Overview

Unit 1a-29

© 2007 IBM Corporation29 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WebSphere Used as a “Foundation” for SOA/ESB Products

More and more we are seeing WebSphere Application Server being used as
the basic foundation for additional function offered by IBM

Tooling …

WebSphere
Process Server

(WPS)

WESB

WebSphere
Enterprise Service Bus

(WESB)

WebSphere
Service Registry and Repository

(WSRR)

WebSphere
Extended Deployment

WebSphere Application Server for z/OS
(J2EE framework, Service Integration Bus, Standards compliance and support)

SDK supplied with WebSphere for z/OS
(V6.0.2 – SDK 1.4.2 / V6.1 – SDK 1.5)

z/OS
(zAAP, WLM, Parallel Sysplex, Sysplex Distributor, SAF …)

DB2
CICS
IMS
MQ
Broker
Web Services
HTTP
JMS
:

Makes good sense – WebSphere is a proven platform. Why not re-use the
function by building on top, rather than gutting WebSphere function and baking
it into each product?
Avoids separate maintenance streams, functional drift over time, etc.

Separate
FMIDs

One of the things you’re going to see much more of is the use of WebSphere Application Server
as a kind of “foundation” for more and more solutions. WebSphere itself provides a now proven
platform for constructing solutions on top of it. WebSphere on z/OS bring the inherent power of
the z/OS platform along with the standards-compliance and J2EE framework, along with a
considerable breadth of connectivity options to other data stores. So solutions such as Extended
Deployment, WebSphere Enterprise Solutions Bus (WESB), WebSphere Process Server and the
new WebSphere Services Registry and Repository -- all are constructed with the prereq of
WebSphere Application Server as its base.

This makes good sense. If the WebSphere function was included inside each of these products, it
would create a more complex maintenance structure, and would very likely result in multiple
instances of WebSphere on the same MVS image when one would have sufficed.

Introduction and Overview

Unit 1a-30

© 2007 IBM Corporation30 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Development Tools for SOA/ESB

Governance …

The different IBM tools all operate on the Eclipse foundation. They provide
different things. You acquire what you need …

Rational Web
Developer

WebSphere
Developer for

zSeries

Rational
Application
Developer

WebSphere
Message

Broker Toolkit

Eclipse

WebSphere
Integration
Developer

� Web development (servlets, JSPs)
� Web services development
� XML and DB access tools

� J2EE/EJB & Portal Development
� Component Testing
� Code Review & Runtime Analysis

� z/OS Application Development
� XML Services
� BMS Map Editor
� COBOL and PL/I DB2 Stored Procedures
� EGL COBOL Generation

� BPEL based processes

� WebSphere Broker development

All within a consistent look-and-feel framework

We’ll see a bit more about IBM’s Eclipse based tools later

A great deal of the SOA story is going to be told in the development tools, and for IBM those are
all based on the Eclipse framework. Eclipse is now an open-source graphical interface that allows
multiple “plugins” (or features) to be incorporated onto Eclipse. The benefit of this is that it
provides a consistent look and feel across tools designed to do very different things. The learning
curve to learn the different tooling is diminished because of this, and it provides some degree of
cross-tool synergy.

The picture above shows a piece of the architectural picture. More tools than just this exist, but
these are the ones we’re going to focus on.

Introduction and Overview

Unit 1a-31

© 2007 IBM Corporation31 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Peek at “Governance”

Governance is the systematic and disciplined planning and implementation of
a Service Oriented Architecture. This is to avoid a poorly structured SOA.

There’s nothing about SOA that guarantees a well structured environment … it takes good planning and execution

What this is suggesting is that SOA involves same
key things that any project involves:

• Proper planning and consideration of the relevant issues

• Actual development of solution and implementation of the solution

• On going management and monitoring, along with updates and
improvements

• An understanding of who the decision makers are, and where lines of
responsibility fall between different organizations

• Commitment to the effort, support of key sponsors, discipline

Solution design and implementation lifecycle

Process management and oversight lifecycle

Based on business need, experience … aided by technology

Based on experience, aided by technology

SOA is a new concept, but
the need for careful

planning and discipline is
not new or unique to SOA

Original Objectives …

We have a whole unit on “Governance” at the end of the workshop. Here we give you a peek --
and you’ll see that at its heart, governance is about careful, intentional, disciplined planning and

execution. As the chart says, there’s nothing about “SOA” that magically guarantees a well
structured and successful SOA environment. In fact, there are many things that can go wrong …
mostly having to do with poor planning and poor execution.

IBM makes various tools and technologies to assist in this process. But ultimately it comes down
to you and the commitment of the organization to plan and implement in a disciplined fashion.
That’s the best recipe for success.

In the delivery of the workshop the topic of governance comes up over and over again … so much
so that when we get to the last unit it’s usually a somewhat redundant presentation. That’s how
integral governance is to SOA.

Introduction and Overview

Unit 1a-32

© 2007 IBM Corporation32 IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Revisit the Objectives

Enterprise Service Bus

SOA
Registry

Workflow
Engine

Service
Broker

Corporate Network

CICS IMS DB2 MQ WAS OtherService
Consumers

Service Providers

We have six high-level objectives:

Understand the “big
picture” concepts

Understand the major
functional components of SOA

Understand IBM
products used to

construct the ESB

Understand how you
can “expose”

applications as services

Appreciate the “value
proposition” of SOA

See how System z
plays a role in this

architecture

1 2 3

4

5

6

We cycle back and look at our original six objectives. Did this introductory presentation serve its
role and answer -- at the high level intended -- these things?

End of Unit

