*Build sophisticated time-series forecasts regardless of your skill level*

IBM® SPSS® Forecasting enables analysts to predict trends and develop forecasts quickly and easily—without being an expert statistician. People new to forecasting can create sophisticated forecasts that take into account multiple variables, and experienced forecasters can use SPSS Forecasting to validate their models. Examples of time series forecasting include predicting the number of staff required each day for a call center, or forecasting the demand for a particular product or service. SPSS Forecasting helps you every step of the way, so you get the information you need faster.

SPSS Forecasting offers features such as:

**Guided analysis supports less experienced users**through the model-building process.**More choices and customization options**allow experienced analysts to control the forecasting process.**Powerful time series modeling procedures**help you develop reliable forecasts quickly.**Time-saving features**allow you to create and update forecasts quickly and reliably.**Flexible output options**make it easy to deliver understandable and useful information to your organization’s decision makers.

## SPSS Forecasting Screenshots

**Guided analysis for novice forecasters**

- Choose the appropriate model for your data and get guidance throughout the model-building process.
- Automatically test your data for seasonality, intermittency, and missing values, and select appropriate models.
- Detect outliers and prevent them from influencing parameter estimates.
- Generate tables and graphs of your data showing confidence intervals and the model’s goodness of fit.
- Write scripts so that updates can be performed automatically.

**More choices and customization for experienced analysts**

- Limit the choice of models through the Expert Modeler feature.
- Opt out of the Expert Modeler and choose every parameter of the model yourself, or use the Expert Modeler recommendations as a starting point for your selections, or to check your work.
- View only the models requiring further examination, so you can uncover problems with your data or models quickly and efficiently.

**Time-saving features**

- Automatically determine the best-fitting ARIMA or exponential smoothing model for your time-series data.
- Model hundreds of different time series at once, rather than having to run the procedure for one variable at a time.
- Develop reliable forecasts quickly, no matter how large the dataset or how many variables are involved.
- Save models to a central file so forecasts can be updated when data changes, without having to reset parameters or re-estimate models.
- Write scripts so models can be updated with new data automatically.

**Powerful time series modeling procedures**

- Create models for time series and produce forecasts using the Time Series Modeler, which has three modeling options:
- Expert Modeler - automatically determines the best model for each of your time series. Model hundreds of different time series at once, rather than having to run the procedure for one variable at a time.
- Exponential Smoothing - specifies a custom exponential smoothing model. You can choose from a variety of exponential smoothing models that differ in their treatment of trend and seasonality.
- ARIMA - uses time series data to predict future trends, such as stock values or other financial market information.

- Uncover hidden causal relationships among large numbers of time series and determine the best predictors for each target series using the Temporal Causal Modeling (TCM) technique.
- Create updated forecasts without rebuilding your models using the Apply Time Series Models (TSAPPLY) procedure, which enables you to to load time series models from an external file and apply them to the active dataset when new or revised data are available.
- Estimate multiplicative or additive seasonal factors for periodic time series using the SEASON procedure.
- Use the SPECTRA procedure to decompose a time series into its harmonic components, which are sets of regular periodic functions at different wavelengths or periods.

**Flexible output options**

- Generate results for individual models as well as results calculated across all models.
- Write output in HTML or XML formats for posting on corporate intranets using the SPSS Statistics Output Management System (OMS).
- Save models as SPSS Statistics data files to continue exploring them for characteristics such as each model’s goodness of fit.
- Incorporate forecasts into Microsoft Office applications to add your analysis to reports and presentations.

### SPSS Forecasting resources

- Trial software: IBM SPSS Statistics Desktop
Identify your best customers, forecast future trends, and perform advanced analysis.

- White paper: Seven Reasons You Need Predictive Analytics Today
Learn about the seven strategic objectives that can be attained by employing predictive analytics.

- Data sheet: IBM SPSS Forecasting (408KB)
Better anticipate revenues, control staffing, inventory and other costs, and manage business processes.

### Not in Sverige?

## Vill du ha hjälp?

### Lätt att få svar på dina frågor.

- Skriv till IBM (e-post)
För försäljningsrelaterade frågor ring +46 70 793 0586+46 70 793 0586

Prioritet nummer: Analytics