Accès direct au contenu principal

Deux universités néerlandaises et IBM améliorent la résolution d'un microscope électronique

Percée importante pour les micro et nanotechnologies

Leiden, Pays-Bas - 14 août 2009: IBM a fait équipe avec deux universités néerlandaises afin d'améliorer la résolution d'un microscope électronique. Les avantages dus à l'amélioration de la qualité de l'image sont importants pour le développement des nanotechnologies.

Les tests avec les nouveaux capteurs ont été effectués par des scientifiques des universités de Leiden et de Twente, aux Pays-Bas, et par IBM. Cette recherche est la première phase du projet Escher (Université de Leiden), soutenue par une subvention de 2,3 millions d’euros du gouvernement néerlandais, via l’Organisation pour la Recherche Scientifique (NOW).

 

L'amélioration de la résolution de l'image permet au «Low Energy Electron Microscope» (LEEM), d’être utilisé pour des expériences sur la croissance et les propriétés des matériaux composés d’une seule couche d'atomes de carbone connus sous le nom de graphène.

 

« Le LEEM, relativement récent dans le domaine de la microscopie, ne cesse de gagner en importance dans l'industrie et dans la recherche universitaire. C’est la technique la plus en pointe dans l'étude des processus qui sont essentiels pour le développement de micro et nanoélectroniques », explique Ruud Tromp, chercheur au centre de recherche T.J. Watson d’IBM et professeur à l’université de Leiden.

IBM est un pionnier dans les nanosciences et les nanotechnologies, depuis le développement du microscope à effet tunnel (STM) en 1981 par les chercheurs Gerd Binnig et Heinrich Rohrer, au centre de recherche IBM à Zurich. Le STM a permis d’obtenir les premières images des atomes individuels, puis de les manipuler. En 1986, Binnig et Rohrer ont obtenu le prix Nobel de physique pour cette invention.


Le microscope Escher sera installé à l'Université de Leiden dans l’année. Conçu à l'origine par Ruud Tromp, l'instrument sera développé par l'Université de Leyde.

DUTCH UNIVERSITIES AND IBM IMPROVE RESOLUTION OF ELECTRON MICROSCOPE

 

Significant Breakthrough for Micro and Nanotechnology

 

LEIDEN, NETHERLANDS, August 14, 2009 - Dutch scientists have succeeded in improving the imaging resolution of an electron microscope by a factor 2.5, by using a new type of detector. This means research on nanoscale materials can be conducted more efficiently and with greater sensitivity, making it possible to design and build the thinnest materials with improved control and quality. These processes are significant for the development of micro- and nano-electronics.

 

The tests with the new detector were performed by scientists from the Dutch Universities of Leiden and Twente, and IBM (NYSE: IBM). This research is the first phase of the Escher Project (University of Leiden) which is supported by a 2.3 million Euro government grant through the Dutch Organization for Scientific Research (NOW).

 

The improvement of imaging resolution allows the ‘Low Energy Electron Microscope’ (LEEM) to be used for experiments on the growth and properties of the thinnest materials on the planet, which consist of only a single atomic layer of carbon, known as graphene. This material is considered very promising for novel electronic applications. LEEM was developed to observe graphene growth processes on surfaces on the nanometer scale in real-time.

 

“Low Energy Electron Microscopy, a relative newcomer in the field of microscopy, is steadily gaining importance in both industrial and academic research. It is the leading technique in studies of processes that are essential for the development of micro- and nano-electronics”, says Ruud Tromp of IBM´s T.J Watson Research Center and professor at Leiden University: “In a conventional electron microscope, the electrons are accelerated to high energies to irradiate the sample. What is special about LEEM is that it uses low energy electrons. Such slow electrons are very sensitive to the finest structures at the surface. Magnetic electron lenses use the reflected electrons to form a video image of the sample and even of its electronic properties. A better detector of course results in a better image.”

 

The improvement in imaging resolution has been made possible by a high tech CMOS detector, called Medipix2. Medipix2 was originally developed by CERN, the Dutch NIKHEF organization, and others, to detect X-rays. Instead, Leiden University researchers Sense Jan van der Molen, Irakli Sikharulidze and Ruud Tromp of IBM installed a Medipix2 detector in the  LEEM instrument at the University of Twente. Given the excellent results, the researchers expect that Medipix2 will be standard in future LEEM instruments.

 

The advantages of the improved image quality are significant for the development of micro- and nanotechnology. For instance, it will now be possible to study the growth and properties of graphene in depth, thereby opening up new opportunities, including developing smaller and smarter storage and memory devices. 

 

Graphene opens up new possibilities for electronics and spintronics, but the important step from laboratory to industry has not yet been made. With LEEM, the growth of graphene can be imaged live, enabling the development of large-scale manufacturing methods. It is also a big step forwards for studies of exotic combinations between metals and organic molecular materials, as explored in molecular electronics. Plans for Escher include a series of experiments with molecular layers that are exactly one molecule thick (‘self-assembled monolayers’). By careful choice of the molecules, we can give a surface new properties, for example in controlling how well water wets the surface, which may be important in biological applications.

 

The Escher microscope will be installed at Leiden University later this year. Originally designed by Ruud Tromp, the instrument will be further developed by Leiden University. Escher will cover a temperature range from almost absolute zero to above 1500 Celsius. Many materials are fabricated at high temperatures, but the properties of interest occur only at very low temperatures. Escher will now be able to study high temperature fabrication processes and low temperature properties in a single instrument.

 

IBM and nanotechnology

IBM has been a pioneer in nanoscience and nanotechnology ever since the development of the Scanning Tunneling Microscope (STM) in 1981 by IBM Fellows Gerd Binnig and Heinrich Rohrer at IBM Research – Zurich. For this invention, which made it possible to first image individual atoms and then manipulate them, Binnig and Rohrer were awarded the Nobel Prize in Physics in 1986. The Atomic Force Microscope (AFM), an offspring of the STM, was developed by Binnig in 1986. The STM is widely regarded as the instrument that opened the door to the nanoworld.

Contact(s) relations externes

Véronique Barone
IBM
33 (0)1 49 05 73 35
v_barone@fr.ibm.com

Magali Rouault
Text 100 pour IBM
01 56 99 71 49
magali.rouault@text100.fr

Informations complémentaires

Image

Figure 1. Images of graphene (light) on an Iridium substrate (dark), obtained with a Low Energy Electron Microscope. (a) with the traditional MCP detector and (b) with the Medipix detector. The distance scales correspond with dimensions on the detector. The sample area imaged is 15.5 μm x 15.5 μm.

Fils RSS correspondants
Thèmes Fils RSS
Microelectronics
Cell, POWER 6, Engineering & Technology Services, OEM, microelectronics
R&D
Ingénierie, Recherche fondamentale, Nanotechnologie, Science de la vie, Chimie, Mathématiques, Matériaux