How IBM is making Web applications
more accessible with WAI-ARIA

David Todd
IBM Human Ability & Accessibility Center
dlitodd@us.ibm.com

‘lllii

mailto:dltodd@us.ibm.com

Overview

How IBM Web applications notify screen reader users when:
— Form input is required.
— Form input is missing or incorrect.

How applications use landmarks to enable more efficient page navigation.

How IBM developers are coding tables so that our automated accessibility testing tool can
determine the difference between a layout table and a data table.

Keyboard navigation requirements for custom widgets.

IBM requirements for implementing custom widgets so that name, role and value information
iIs communicated to assistive technologies.

Widget problems

» Early Web applications were relatively simple to make accessible because accessibility was
built into standard HTML elements.

* Modern Web applications have increasingly complex user interfaces.

* The Uls contain widgets like trees, menus and tab panels.

* Widgets are built using a combination of JavaScript, CSS and standard HTML elements.
* Widgets look like desktop widgets but they aren’t enabled for accessibility.

e Screen reader users find applications containing these widgets difficult if not impossible to
use.

Form field problems

e Screen reader users have a difficult time
identifying fields that require data before
a form can be submitted.

e Screen reader users find it difficult to
identify form fields that contain invalid
data.

Username cannot be less than six characters.

* Username: [short]

* Password:

Phone Number: | 335.401-0853

E-Mail Address: | myid@mydomain.com
URL (Website Address): | ytp:imydomain.com/

Reset | Submit |

Fields with an * are required for submittal.

Navigation problems

» Screen reader users find it difficult to
navigate Web pages because there are
no standard navigational landmarks to
areas like search or navigation.

» Keyboard only users find Web
applications containing custom widgets
difficult to navigate because they must do
excessive tabbing.

about | products | solubons | press | partners | support [X]

v Vivisimo

theWeb |w
mr:h vivisimeo.com | J

o Whale 2zg
@ » Whale Watching s
& » Bhotos s
@ » flue Whale v
@ p Shark g B2 BNCYCIODETIA jraw wimsest]
lcmrﬁw:&ﬂm L
@ w Hiller Whales s R e o Comaona: The fae
@ » Vihale and Dolphin (14 .
oLy LI 7 Ack 1
& » Right Whale 10 on wikcipadia org/wik/\Vhale
@ » Whale Reseorchm 2 Weloome 10 Whale TANKENS i sinios] pame rache] rev
@ » Exploding Whale s Manufacturer of liquid waste tankers, spacialist vehicles, jetting
Mm anmg wﬂsmmmuﬁ

What's the solution?

 Throw away HTML, JavaScript and CSS and start over with an accessible technology for
building Web applications. NO WAY!

« We must find a way to add information to existing Web technologies in order to make Web
applications more accessible.

Solution

* Augment existing Web technologies with WAI-ARIA information that communicates
accessibility information to assistive technologies.

* What is WAI-ARIA? It's the Accessible Rich Internet Applications specification, and it
defines a way to make Web applications more accessible to people with disabilities.

* The specification enables developers to embed WAI-ARIA markup in widgets and
implement arrow key navigation.

 The goal is to enable operation of custom widgets in the same manor as desktop application
widgets.

IBM supports the specification by requiring developers to:
— Incorporate WAI-ARIA attributes in Web applications.
— Implement arrow key navigation in custom widgets.

Custom widgets

First Dialog X TahContainer Dialog File : Edit‘
Introductory information spoken by screen readerd | | UJ'%U Cirl+ Z
aria-describedby is added to the declaration of dialog " First tab | || Socond h Redo Cirl + 7
abowe with vwalue equal ta the id of the container element Fr——— ’
for this text, This technigue will worl: in Dojo 1.4, Cut Cirl + ¥
Namme: | | This is the first tab. Copy Cirl +
Lacation: | | Faste Crl + W
Dat | | | Lorem ipsurm dolor sit amet, Delate Del
ate: -

Tlme:. . & Tabpane! Select All Ctrl + A
DESDFIDtIDI‘I:| | Find Ol + F

[+] [I%v] [+ v] Find Again Cirl + &

button Menu bar and menu
Dialog
|12-f’15a"2':'1':| - <l Please Enter a date in dd/MMSyyyy format l J| = Continents
°é' Cut Copy Faste Tooltip +| [0 Africa
Toolbar List of colors: 0 asia
. + [Dceania
= Olrange +| [Europe
630 =] [ormg
= ed + 70 Morth Armerica

spinbutton listbox

+

[South Armerica

Tree

Tree - missing accessibility information

 Tree is developed with a combination of
CSS, scripting and HTML elements.

« There’s no mechanism to tell assistive By Somman
technologies that: 2 @ Africa
— The widget is a tree Egqypt
— It has expandable nodes. * O3 Kenya
— It has multiple levels. + [Sudan
+ [Asia
* A screen reader user has a difficult time '+ [Oceania
determining: 71 C3 Europe
— What is this widget. 71 & Morth America
— Whether nodes are open or closed. 318 South America
— Which node is selected.

— Current location.

« Navigation: Must tab to each node in the
tree.

Tree - WAI-ARIA attributes added

* Adding WAI-ARIA attributes to the tree
enables a screen reader to tell the user:

— The widget is a tree.

— Which node has focus.

— Their current location in the tree.
— Whether a node is open or closed.

» The WAI-ARIA keyboard navigation
model is implemented.
— Navigate the tree with the arrow
keys.
— When a tree node has focus,
tabbing places focus on the next
focusable element after the tree.

- & Continents
- & Africa e

ety

Eqypt »
+ [Kenya
+ [0 Sudan

+ [Asia

+ [Oceania

+ [Europe

- role =free

(on outer contaner)

role = freeitem
Bria-expancled = true
(on open Africa mode)

role = treeitem
gris-selected =frus

(on highighted Eqypt child
nicele with no children)

role = treeitem
aria-expancled = false
(on cosed Oceania mode)

Typical steps for implementing an accessible widget

Pick the widget type from the WAI-ARIA specification (e.g., tree, menu, toolbar, etc).

See the WAI-ARIA authoring practices to see if there are best practices for implementing the
widget.

Examine an implementation to see how it works (e.g., codetalks.org).

Establish the widget structure in the markup (parent/child).

Implement the list of WAI-ARIA supported states and properties (e.g., tree — aria-expanded,
aria-selected).

Repeat this for the children.

Implement arrow key navigation:
— The ability to tab to a widget and then navigate its elements with the arrow keys.

— While the widget has focus, the ability to press tab again to place focus on the next
focusable element after the widget.

Typical steps for implementing an accessible widget (continued)

Implement arrow key navigation.

Widget captures keyboard events.

Set the tabindex="-1" on child elements to allow them to be focusable.
ChildElement.focus()

Browser will fire a focus change event to the assistive technology.

If focus isn’t visible, draw focus border using CSS styling.

 Fontsize - use “em” or % instead of “px” so users can so users can increase font size.

. Do not hard-code container sizes. Containers won't scale when font size is increased.

e Support high contrast mode.

e Test with a WAI-ARIA aware browser and screen reader.

Verify screen reader speaks proper role, label and state information.

Dojo — IBM de facto standard for Web application user interfaces

. IBM committed resources to the Dojo Open
Source project to help make the core widgets
and the DataGrid widget accessible.

. The widgets contain the proper WAI-ARIA
attributes to make them accessible when using a
WAI-ARIA aware screen reader and browser.

. Keyboard support in IE 6, IE 7, Firefox 2, Firefox
3.

. Low Vision Support.

— Windows high contrast support in IE 6, IE
7, FF2, FF3.

— No fixed font sizes.
— Support images off.

Dojo Tree from Store
e b role=tree
=| [Continents (on outer container)
- (& Africa » role = treeitem
T arig-expanded = true
Eqypt » (on open Africa mode)
+ (3 Kenya role = treeitem
. gria-selected = true
+ [Sudan (on highiighted Egypt child
e node with no children)
fsia
+/ [0 Oceania » role = tregitem
. aria-expanded = false
+| (3 Europe A (o clased Oceania made)

Dojo Dijit accessibility documentation

. When extending a widget, IBM developers consult the Dojo accessibility documentation in order to avoid
breaking accessibility.

Docume n'l'qﬂ on Ouick Stant Guide | Reference Guide AFI Documentation
Dijit

Dijit s Dojo’s Ul Libraryd and lves as a separalé namaspace dijic. Dijit requires Dojo Cora. Each of the
widgets and functionality provided by Dijit is describe in the following sections, though the aforementioned

Documentation

guickstan guides cover some basics. sranpage
About Dijit Review this section to gain a Djo
general understanding of Dijit

Dojo accessibility. Helps to

Widgets understand how to avoid o
dijit._Templated breaking accessibility. Quickstart guides
dijit. _wicget

ally
allySirategy Table Of Contents
allyResources :
) Creating Accessible Widgets o
Testing for Accessibility Widgets
a11y Requirements Most widgets document Form handiing
allyStatement known accessibility issues. ot
Helps to know these issues o
dijit. Dialog - .
o s \when developing or testing.

dijit.InlineEditBox
dijin. Menu
dijit. MenuBar

Known issues with
high contrast mode
or large fonts?

Known keyboard
navigation issues?

Why isn't JAWS
behaving as
expected?

Dialog documentation

Ernowtl lssueas

on Windows, In Firefox 2, when in High Contrast mode, the dialog with displaw correctly, but the underking
[page will not be seen.

Dialogs with an input typoe=Tfile as the onlky focusable element will nat wark with the kesdooard. This is
because input tvoe=Tfile elements reguire two tab stops - ane in the textbox and the other on the "Browse"
button. Father than clutter the dialog box widget with code to special case for this one condition, dialog
boxes with an input voe=Tfile as the onky focusakble element are not supported.

Dialogs with an input tyvioe=Tile element as the first focusable element in Firefox (and there are additional
focusahle elements). Programmatically setting focus to an input e =file element behawes oddly in Firefox.
In this case the focus is set onto the texthox field and then immediatels mowed onto the brovwse button of
the input tvioe=file field. This causes problems in Firefox when setting focus to an input typoe=~file element
as the first element as a dialog. For this reason, in Firefox if the first focusable itern in a dialog is an input
tvioe=Tile, focus will bbe set onto the dialog container rather than the input element. For these reasons it is
recammended that input twoe=Tile elements not be added as the anly or first focusatle item within a dialog
in Firefox.

Ewen though the dialog is marked with the proper AFELA role of dialog, there are issues with screen readers.
Due to these issues |, it is important that the instructions or label for a trigger element that opens a dialog to
indicate wia text that a dialog will be opened.

JaWsS 9 does not speak "dialog” when the dialog is opened in Firefox or |IE 8.

In Firefox 2 ewen though the focus is on the first focusable itern in the dialog, the information about that
iterm is also not spoken.

In Firefox 2 with JAWS 9 the dialog is also not announced but the information about the item in the dialog
which gets focus is spoken. The issue has been fized in JAWS 10 with Firefox 3.

In IE & with JaWws 10 and Jaws 11 the dialog information and title is not spoken. This is due to the fact that
IE 8 does not support the ARLA labelledby property that is used to assign the title to the dialog.

Make Web applications easier to navigate with WAI-ARIA landmarks

Add a WAI-ARIA nai n landmark to enable screen reader users to jump directly to the page
main content.

<h1 role="main">Main content heading</h1>

* If a page contains navigation links, assign a WAI-ARIA navi gat i on role to the links
container.

<h2 role="navigation">Navigation</h2>
» Ifasearch field is present, assign a WAI-ARIA sear ch role to the search container.
<div role="search">div containing a search field</div>

» If the same landmark is used multiple times on a page, each instance must have a unique
label.

— <h2 role="navigation” aria-label="site search”>
— <h2 role="navigation” aria-labelledby="searchID">

Make Web applications easier to navigate with WAI-ARIA landmarks

* Additional application landmarks for making Web applications easier to navigate:

— application — designates a region of a page that executes a set of tasks for the user
(e.g. calendar).

— banner — contains site oriented content (e.g., l0go).

— complementary — marks content that is relevant to the main content, but remains
meaningful when separated from the main content. For example, movie show times or
related articles.

— contentinfo — a region that contains information about the parent document (e.g.,
copyright, privacy statement). Only one of these can be used per page.

— form — used to mark scripted controls when a standard form element isn’'t used, but the
controls cause a form submit.

» Screen reader user can navigate landmarks sequentially or select one from a list of
landmarks.

Notify users when input is required

e Addanaria-required="true” property to form fields that require input before a form
can be submitted.

e Anaria-required="true” property is mandatory in addition to other indicators that a
field is required (e.g., asterisk).

When an form field receives focus and it has an ari a- r equi r ed="t rue” attribute, a
screen reader indicates that information is required.

 Example:
<label for="reqgfield">* Username:</label>
<input name="Name" id="regfield" type="text" aria-required="true" />

* Username: |short|
* Password: | R

Notify users when input is incorrect

e Addanaria-invalid =*true” property to input fields when user input falls outside the
required format or values.

 For example, if a user enters an invalid phone number in the following field, JavaScript
updates the DOM to add an ari a-i nval i d property to the input element:

<label for="phone”>Phone: </label><input type="text" id="phone" ...>
* The JavaScript snippet that updates the DOM follows:

If (invalidTest) {
document.getElementByld(“phone”).setAttribute(“aria-invalid”, “true”);

Add a present ati on role to layout tables

« Often, tools that are used for automated accessibility testing can't tell the difference between
a data table and a layout table.

* Hence, accessibility tools often generate false error messages about tables.

« The only way for an automated testing tool to definitively identify a layout table is by finding
arol e="presentation” attribute on the table.

« Therefore, developers are required to add a presentation role to layout tables.

— <table role="presentation”> ... </table>

« The present ati on role causes a screen reader to ignore the table structure and read only
the table content.

Automated accessibility testing with IBM Rational Policy Tester

Policy Tester helps determine a site's level of
compliance with Section 508 of the U.S.
Rehabilitation Act and the W3C WCAG 2.0
guidelines.

Developers can do a site crawl or inspect
individual pages for accessibility problems.

IBM and the Open Ajax Alliance Accessibility
Working Group are developing a set of Open
Source accessibility rules that Policy Tester will
use to validate WAI-ARIA markup.

The group is working on rules that, for example:

— Validate correct parent/child role
relationships.

— Validate correct WAI-ARIA properties for
roles.

— Validate that WAI-ARIA property
references are valid.

Summary of WAI-ARIA requirements for IBM Web applications

Add WAI-ARIA properties to rich Internet widgets to communicate name, role and value
information to assistive technologies.

* Implement WAI-ARIA arrow key navigation to mimic desktop widget navigation.
 Add WAI-ARIA landmarks to enable easier page navigation.

* Notify screen reader users when input is required by adding an ari a- r equi r ed property
to form fields.

* Notify screen reader users when input is invalid by adding an ari a-i nval i d property to
form fields.

* Add role="presentation” to layout tables to enable more accurate table testing results.

