
Building Fully Accessible Social Software and Rich Web

Applications

with WAI-ARIA

Damian Chojna
IBM Collaborations Software Engineer, IBM Software
Matt King
I/T Chief Accessibility Strategist, IBM BT/CIO Office
Rich Schwerdtfeger
CTO Accessibility IBM Software

©2011 IBM Corporation

Agenda

– What is W3C WAI-ARIA?

– A look at IBM Connections

– Design considerations for accessible web applications

– Lessons learned

What is W3C ARIA (Accessible Rich Internet Applications)?

– A way for authors to apply rich accessibility semantics in Web 2.0 content to
support OS platform accessibility

– A way to reproduce the keyboard functionality of desktop applications on a
web page

– A vehicle to provide full interoperability with assistive technologies for Rich
Internet Applications through the browser

– A vehicle to correct static (X)HTML accessibility deficiencies

WAI-ARIA an Open Standard

Browser converts ARIA to accessibility services

� 20% of the work needed for rich desktop
� A Cross platform accessibility API
� Full Keyboard navigation like desktop
� Ubiquitous adoption
� Included in over 170 IBM products
� Designed to support WCAG 2 and the

U.S. 508 Refresh
� All major browsers providing support

Markup for menu:
<div role=“menu” aria-haspopp=“true”>

<div role = “menuitem” aria-selected=“true”>
A smarter planet
</div>…

</div>

The Assistive Technology would read the menu

as: Menu Item. A Smarter Planet. One of 13

menu items.

WAI-ARIA – Significant advancement in accessibility vs. desktop

WAI-ARIA

<div role=“checkbox” aria-checked=“true” onkeyup=“…”

Browser DOM Node

Accessible Object API Binding

OS

Assistive Technology

>

•Semantical Structure through tree hierarchy
•Attribute change notification
•Focus management
•Styling
•Role
•States and Properties
•Rich Text
•State and Property Event Notification
•Actions
•Structural access to other objects
•Advanced interfaces (Tables, relationships)
•OS Accessibility API Notification

“The Contract” AT Access to Accessible Application

New Information as seen by Assistive Technology

� New accessibility Information

Role Menu Item

State Selected

Name Top Stories

Actions None

Parent Menu

WAI-ARIA – delivers semantics and desktop keyboard
functionality to provide full interoperability with ATs

– Typical widget states
• aria-checked, aria-selected, aria-disabled, aria-currentvalue, aria-expanded, etc.

– Relationships
• aria-describeby, aria-controls, aria-flowto, aria-labelledby, aria-owns

– New AJAX Live Region properties
• aria-live (off, polite, assertive)
• aria-relevant (additions, deletions, text, all)
• aria-atomic

– Drag/Drop
• aria-grabbed
• aria-dropeffect

– Miscellaneous
• aria-sort (ascending, descending)
• aria-setsize, aria-posinset, aria-level

– Role (widgets and navigational landmarks)
• Widgets: (tree, grid, button, checkbox, menu, dialog, etc.)
• Structural: (directory, list, header, etc.)
• Landmarks: (main, navigation, complementary, banner, contentinfo, form, search, etc.)

– Tabindex
<div tabindex=“-1” role = “menuitem” aria-disabled=“true”>

Overview of Lotus Connections 3.0

–	 Social Software for business

–	 Build and maintain social
networks and communities

–	 Manage your profile

–	 Share
•	 Files

•	 Blogs

•	 Wikis

•	 Forums

•	 Bookmarks

–	 Customize how you see your
social network in Home page

–	 Extensive search across
components

Design Considerations Overview

– Choosing a Toolkit or Defining a Custom Control

– Workflow & Navigation
• Landmarks

• Keyboard

• Focus

– Content Editable Sections

– High Contrast

WAI-ARIA Design Consideration – Choosing a Widget Library

– Why IBM chose Dojo
• Rich widget library

• WAI-ARIA enabled

• Keyboard enabled

• Supports High Contrast

Web 2.0/ARIA Navigation Paradigm Shift Navigation

� Navigation Tab and Click

� Everything but forms and links are
browsed by AT

� Page reloads for new content

� Tab to

� Links

� Form elements

� Widgets *

� Read-only documents *

� Arrow key navigation within Widgets *

� Keyboard accelerators for Widgets *

� In page navigation based on ARIA regions *

� Mix: Web Applications and documents

* Provided by author

WAI-ARIA Design Considerations – Workflow Comprehension

– How will the user understand what
content and function is available?

– Which page regions should have
landmark roles?

•	 banner, navigation, search, main, form,
application, contentinfo, complementary

•	 Pay careful attention to labeling and nesting

– What other portions of the page would
benefit from declaring ARIA structural
roles?

•	 e.g., region, article, document

WCAG2A 1.3.1: Information, structure,
and relationships conveyed through
presentation can be programmatically
determined or are available in text.

WCAG2A 1.3.2: When the sequence in
which content is presented affects its
meaning, a correct reading sequence can
be programmatically determined.

WCAG2A 2.4.1: A mechanism is
available to bypass blocks of content that
are repeated on multiple Web pages.

...

WAI-ARIA Design Considerations – High-level Site navigation

– How will users navigate among
application components?

•	 Is navigation layered, e.g., hierarchical tree,
nested tabs?

•	 Is the interface tabbed?

•	 If tabbed, does it fit the conventional tabbed
interface pattern? Or, are the tabs and tab
panels dispersed among and visually separated
by other page elements?

– Options to consider for dispersed tabbed
interfaces:

•	 navigation toolbars with toggle buttons

•	 menubars with menuitemradio elements

•	 listbox of links

WCAG2A 2.4.3: If a Web page can be
navigated sequentially and the navigation
sequences affect meaning or operation,
focusable components receive focus in an
order that
preserves meaning and operability.

WCAG2A 4.1.2: For all user interface
components ... the name and role can be
programmatically determined; states,
properties, and values ... can be
programmatically set; and notification of
changes to these items is available

Demo Profiles

– Landmarks

– Navigation Toolbar

Landmark Navigation – Landmark Demarcation

role=“navigation” role=“banner” role=“main” role=“search”

role=“region”

role=“complimentary”

Navigation within Connection components

– Two levels of navigation within a Connections component
• Top level for navigating between different sections

• Secondary level for navigating and/or filtering within the same application section

role=“navigation”

Tab panel or toolbar?

– Both tab panel and toolbar have similar container-child structure

– Different interaction patterns

– Primary motivation on which interaction pattern to apply is based on the
user’s interaction with the widget

– Visual representation is not always the deciding factor

Tab panel

– Container for resources associated with a tab: set of layered pages, only one
page is displayed at a time

– When the user activates a tab, the contents of the corresponding tab panel
are made visible; the tab is considered "active" and remains such until
another tab is activated

– The active tab is placed into the tab order; only the active tab should be in
the tab order

– A default tab is specified that is active when the tabbed interface component
is initialized

Toolbar

– Flat non-hierarchical collection of controls that provides quick access to a
subset of functions

– Tab moves focus to the first enabled toolbar button
– A subsequent Tab moves focus out of the toolbar
– Left Arrow and Right Arrow keys navigate to the enabled buttons in the

toolbar
– Direction needs to be adjusted for Right to Left languages

Top navigation

– Implemented as a toolbar with toggle buttons
– Use aria-controls to indicate which part of the UI the widget controls

role=“toolbar”

role=“button”

<ul role=“toolbar” aria-label=“Wikis navigation tab” aria-controls=“lotusMain”>

Secondary navigation

– Use toolbar, tree or other structure depending on interaction and complexity
of choices

role=“button”

role=“toolbar”

role=“tree”

All nodes are
role=“treeitem”

role=“tree”

e=“treeitem”

role=“button”rol

All nodes are
rol

role=“tree”

All nodes are
role=“treeitem”

role=“toolbar”

e=“button”

role=“tree”

All nodes are
role=“treeitem”

Tabbed navigation example

All tabs have
role=“tab”

role=“tablist”

role=“tabpanel”

<ul role="tablist" aria-label="...">

<a aria-selected="true" aria-controls="comments“ href="..." role="tab">Comments (1)

<a aria-selected="false" aria-controls="versionHistory“ href="..." role="tab" tabindex="-1">Versions (1)

<a aria-selected="false" aria-controls="attachments“ ref="..." role="tab" tabindex="-1">Attachments (0)

<a aria-selected="false" aria-controls="about“ href="..." role="tab" tabindex="-1">About

Keyboard Navigation (managing focus) basics

– Tabindex can be used to control how and if an element is in the tab order

– Tabindex= “-1” Can set focus on an element without adding to tab order
• Ideal for Widgets

– Tabindex=“0” Place focusable elements in the tab order in document order

– Tabindex = “> 0” Same as today’s tabindex

Author-managed arrow key navigation within widgets

– Capture key strokes at the widget managing focus

– Move focus to the child using tabindex:
• Set the tabindex=“-1” on the child element to allow it to be focusable

• Childelement.focus();

• Draw visible focus to the child with focus using styling

• Browser will fire a focus change event to the AT

– Managing parent indicate which child has focus using active descendant
• Set aria-activedescendant=“active childID” on the parent (like listbox or menu)

• Draw visible focus to the child with focus using styling

• Browser fires focus event on behalf of the child

Providing keyboard navigation support in Connections

– Use Dojo widgets that have been enabled with WAI-ARIA supported
keyboard navigation

• e.g., Tree navigation, menus etc.

– For custom widgets a reusable library was created to enable quick
integration of standard keyboard interaction patterns

• e.g., Toolbars and tab lists

ARIA Helper

– Connections components (Wikis, Profiles etc.) are developed by different
teams each with their own implementation of the user interface

• Some of the user interface existed before the WAI-ARIA support was added

• Each team needs to provide keyboard navigation for their navigation widgets

– The ARIA Helper component was developed to help each developer to apply
the correct keyboard interaction pattern for either Tabbed or Toolbar based
navigation

– ARIA Helper takes a HTML DOM structure that has correct ARIA roles
hierarchy for Tab panel or Toolbar and hooks in the correct keyboard
navigation and focus control

Demo

– Mega menu

– Maintaining focus

Integrating Content Editable Sections

– What is a “contenteditable” section?

– Navigation between the toolbar and rich text editor

– Supporting dialogs

– Working with the browser and screen reader manufacturer
• Embedded tables

• Embedded objects

Demo

– Activities – create section

– CKEditor help

Rich Text Editor

– Use role=“application” for top level
– Self contained widget
– Keyboard navigation completely controlled by the widget

role=“application”

WAI-ARIA Design Considerations - Workflow

–	 HTML Body Role

–	 Is it a Document that contains application widgets? (<body role="document">)
• This is the default approach familiar to all

–	 Is it an Application that contains document components?
(<body role="application">)

–	 Screen reader considerations

–	 role=document (default) enables screen reader document reading mode on page load
• What everyone is used to

• Screen reader quick nav keys to move by landmark, heading, paragraph, form element, etc., are available

• Screen reader goes in/out forms/app mode when app widgets are encountered

–	 role=application forces app mode on page load
• With JAWS insert+z is required to leave app mode

• Expect user to access all content via app mode (no screen reader quick nav keys)

• All static text must be in keyboard nav order (tab index 0 and role document)

• Author responsible for providing efficient keyboard method to navigate page

Design Considerations High Contrast

– High contrast is handled differently by different OS Platforms
• Windows – High contrast color scheme, large gonts

• Mac – Changes system palette

– Avoid hard coding font sizes, shapes, etc. in pixels

– Widget libraries that support high contrast
• Dojo Dijit

• Some JQuery

Detecting high contrast mode

– No simple way to detect high contrast mode

– How to detect high contrast?
•	 Step 12 in http://www.w3.org/WAI/PF/aria-practices/#accessiblewidget demonstrates how to detect

high contrast mode
•	 Dojo toolkit provides a mechanism to detect high contrast mode

http://www.w3.org/WAI/PF/aria-practices/#accessiblewidget

Developing & Testing

– High level design

– Blind user testing, walk through and reviews

– Developer tools
• WCAG 2.0 and Section 508 verification with Webking

• JAWS 12

• Custom WAI-ARIA validator

– IBM will soon be deploying Rational Policy Tester…

